

MATHEMATICS (EXTENSION 1)

2013 HSC Course Assessment Task 3 (Trial Examination) June 26, 2013

General instructions

- Working time 2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 9)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:		# BOOKLETS USED:		
Class (please \checkmark)				
○ 12M3A – Mr Lam	○ 12N	\bigcirc 12M4A – Mr Fletcher		
○ 12M3B – Mr Berry	○ 12N	14B – Ms Beevers		
○ 12M3C – Mr Lin	○ 12N	14C – Ms Ziaziaris		

Marker's use only.

QUESTION	1-10	11	12	13	14	Total	%
MARKS	10	15	15	15	$\overline{15}$	70	

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions Marks

- What is the acute angle between the lines y = 2x 3 and 3x + 5y 1 = 0, correct 1 to the nearest degree?
 - (A) 32°
- (B) 50°
- (C) 82°
- (D) 86°
- The coordinates of the points that divide the interval joining (-7,5) and (-1,-7)1 externally in the ratio 1:3 are
 - (A) (-10,8)
- (B) (-10, 11) (C) (2, 8)
- (D) (2,11)
- 3. CT is a tangent to the circle. AB is a secant, intersecting the circle at A and B. 1 AB intersects CT at T.

Which of the following statements is correct?

(A) $CT^2 = AC \times BC$

(C) $CT^2 = AC \times BT$

(B) $CT^2 = AB \times BC$

- (D) $CT^2 = AT \times BT$
- What is the domain and range of $y = \cos^{-1}\left(\frac{3x}{2}\right)$?

(A)
$$D = \left\{ x : -\frac{2}{3} \le x \le \frac{2}{3} \right\}, R = \{ y : 0 \le y \le \pi \}$$

(B)
$$D = \{x: -1 \le x \le 1\}, R = \{y: 0 \le y \le \pi\}$$

(C)
$$D = \left\{ x : -\frac{2}{3} \le x \le \frac{2}{3} \right\}, R = \left\{ y : -\pi \le y \le \pi \right\}$$

(D)
$$D = \{x : -1 \le x \le 1\}, R = \{y : -\pi \le y \le \pi\}$$

1

- **5.** Which of the following is equivalent to $\int \frac{dx}{4x^2+9}$, ignoring the constant of integration?
 - (A) $\tan^{-1} \frac{2x}{3}$

(C) $\frac{2}{3} \tan^{-1} \frac{2x}{3}$

(B) $\frac{1}{6} \tan^{-1} \frac{2x}{3}$

- (D) $\frac{3}{2} \tan^{-1} \frac{2x}{3}$
- **6.** Which of the following is the general solution to $3\tan^2 x 1 = 0$?

1

(A) $n\pi \pm \frac{\pi}{6}$

(C) $n\pi \pm \frac{\pi}{3}$

(B) $2n\pi \pm \frac{\pi}{6}$

- (D) $2n\pi \pm \frac{\pi}{3}$
- 7. What is the value of $\sin(\alpha + \beta)$ if $\sin \alpha = \frac{8}{17}$ and $\sin \beta = \frac{4}{5}$?
- 1

(A) $\frac{36}{85}$

(C) $\frac{84}{85}$

(B) $\frac{77}{85}$

- (D) $\frac{88}{85}$
- **8.** Which of the following represents the exact value of $\int_0^{\frac{\pi}{8}} \cos^2 x \, dx$?

1

(A) $\frac{\pi - 2\sqrt{2}}{16}$

(C) $\frac{\pi + 2\sqrt{2}}{16}$

(B) $\frac{\pi - 2\sqrt{2}}{8}$

- (D) $\frac{\pi + 2\sqrt{2}}{8}$
- **9.** Which of the following represents the derivative of $y = \cos^{-1}\left(\frac{1}{x}\right)$?

1

(A) $-\frac{1}{\sqrt{r^2-1}}$

(C) $\frac{1}{\sqrt{x^2-1}}$

(B) $-\frac{1}{x\sqrt{x^2-1}}$

- (D) $\frac{1}{x\sqrt{x^2-1}}$
- **10.** Which of the following expressions is true?

1

- (A) $\tan^{-1} x = \sin^{-1} \frac{1}{\sqrt{1-x^2}}$
- (C) $\tan^{-1} x = \sin^{-1} \frac{x}{\sqrt{1 x^2}}$
- (B) $\tan^{-1} x = \sin^{-1} \frac{1}{\sqrt{1+x^2}}$
- (D) $\tan^{-1} x = \sin^{-1} \frac{x}{\sqrt{1+x^2}}$

Examination continues overleaf...

Section II

60 marks

Attempt Questions 11 to 14

Allow approximately 1 hour and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

Commence a NEW page.

Marks

(a) Solve for
$$x$$
: $\frac{5}{x-1} > 2$

2

(b) Find the value of θ , such that

4

$$\sqrt{3}\cos\theta - \sin\theta = 1$$

where $0 \le \theta \le 2\pi$.

(c) A freshly baked cake is cooling in a room of constant temperature of 20° C. At time t minutes, its temperature T decreases according to the equation

$$\frac{dT}{dt} = -k(T - 20)$$

where k is a positive constant.

The initial temperature of the cake is 150° C and it cools to 100° C after 15 minutes.

- i. Show that $T = 20 + Ae^{-kt}$ (where A is a constant) is a solution to this equation.
- ii. Find the values A and k, giving k correct to 3 decimal places.
- iii. How long will it take for the cake to cool to 25° C? (Use the value of k obtained in the previous part)
- (d) A particle is moving in a straight line. After time t seconds, it has displacement x metres from a fixed point O on the line. Its velocity v ms⁻¹ is given by

$$v = \sqrt{x}$$

Initially, the particle is $1 \,\mathrm{m}$ to the right of O.

i. Show that its acceleration a is independent of x.

1

1

ii. Express x in terms of t.

 $\mathbf{2}$

iii. Find the distance travelled by the particle during the third second of its motion.

Question 12 (15 Marks)

Commence a NEW page.

Marks

(a) Show that
$$\frac{\sin x}{1 - \cos x} = \cot \frac{x}{2}$$
.

(b) Use the substitution $u = \sin^2 x$ to evaluate

4

3

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} \, dx$$

Give your answer in simplest exact form.

- (c) Let $f(x) = x^2 2x$ for $x \ge 1$.
 - i. On the same set of axes, sketch the graphs of y = f(x), y = x and the inverse $y = f^{-1}(x)$.
 - ii. Find an expression for $f^{-1}(x)$.
 - iii. Evaluate $f^{-1}(2)$.
- (d) Use mathematical induction to show that for all positive integers $n \geq 2$,

$$2 \times 1 + 3 \times 2 + 4 \times 3 + \dots + n(n-1) = \frac{n(n^2 - 1)}{3}$$

Question 13 (15 Marks)

Commence a NEW page.

Marks

 $\mathbf{2}$

- (a) i. Show that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$.
 - i. Hence evaluate $\int 2\sin^3\theta \,d\theta$
- (b) $P(x) = ax^3 7x^2 + kx + 4$ has x 4 as a factor. When P(x) is divided by (x 1), the remainder is -6.
 - i. Determine the values of a and k.
 - ii. Evaluate $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
- (c) AB is a diameter of the circle and C is a point on the circle. The tangent to the circle at A meets BC produced at D. E is a point on AD and F is a point on CD such that $EF \parallel AC$.

- i. State why $\angle EAC = \angle ABC$.
- ii. Hence show that EABF is a cyclic quadrilateral.
- iii. Show that BE is a diameter of the circle through E, A, B and F.
- (d) $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$. The normal to the parabola at P cuts the y axis at N. M is the midpoint of PN.

- i. Show that the normal has equation $x + ty = 2at + at^3$.
- ii. Find the equation of the locus of M as P moves on the parabola.

 $\mathbf{2}$

1

 $\mathbf{2}$

Question 14 (15 Marks)

Commence a NEW page.

Marks

- The radius of a spherical balloon is expanding at a constant rate of 6 cms⁻¹. (a)
 - At what rate is the volume of the balloon expanding when its radius is
 - 3
 - ii. At what rate is the surface area of the balloon expanding if the rate of change of volume is $15 \,\mathrm{cm}^3 \mathrm{s}^{-1}$?
- From a point X due east of a tower, the angle of elevation of the top of the tower (b) H is 31°. From another point Y due south of X, the angle of elevation is 25°. $XY = 150 \,\mathrm{m}.$

- Show that $h = \frac{150 \tan 25^{\circ} \tan 31^{\circ}}{\sqrt{\tan^2 31^{\circ} \tan^2 25^{\circ}}}$ 3
- Hence, find the height of the tower.
- AOB is the diameter of the circle with centre O and radius 1 metre. AC is a (c) chord of the circle such that $\angle BAC = \theta$, where $0 < \theta < \frac{\pi}{2}$.

The area of the part of the circle contained between AB and AC is equal to one quarter of the area of the circle.

- i. Show that $\theta + \frac{1}{2}\sin 2\theta \frac{\pi}{4} = 0$.
- Show that $0.4 < \theta < 0.5$. $\mathbf{2}$
- Use one application of Newton's Method with an initial approximation of $\mathbf{2}$ $\theta_0 = 0.4$ to find the next approximation to θ , correct to 2 decimal places.

End of paper.

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \qquad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g " \bullet "

STUDENT NUMBER:

Class (please ✓)

○ 12M3A – Mr Lam

○ 12M4A – Mr Fletcher

 \bigcirc 12M3B – Mr Berry

 \bigcirc 12M4B – Ms Beevers

 \bigcirc 12M3C – Mr Lin

 \bigcirc 12M4C – Ms Ziaziaris

- 1 (A) (B) (C) (D)
- $\mathbf{2}$ \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}
- 3 (A) (B) (C) (D)
- 4- (A) (B) (C) (D)
- $\mathbf{5}$ \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D}
- 6 (A) (B) (C) (D)
- $7 \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$
- 9- (A) (B) (C) (D)
- 10 (A) (B) (C) (D)

(c)

Suggested Solutions

Section I

1. (D) **2.** (B) **3.** (D) **4.** (A) **5.** (B) **6.** (A) **7.** (C)

8. (C) 9. (D) 10. (D)

Question 11 (Ziaziaris)

(a) (2 marks)

$$\frac{5}{x-1} > 2$$

$$5(x-1) > 2(x-1)^2$$

$$5(x-1) - 2(x-1)^2 > 0$$

$$(x-1)(5-2(x-1)) > 0$$

$$(x-1)(7-2x) > 0$$

$$\therefore 1 < x < \frac{7}{2}$$

(b) (4 marks)

$$\sqrt{3}\cos\theta - \sin\theta = 1$$

$$\equiv R\cos(\theta + \alpha)$$

$$= R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$$

$$\begin{cases} R\cos\alpha = \sqrt{3} & (1) \\ R\sin\alpha = 1 & (2) \end{cases}$$

$$R^2 = 3 + 1 = 4$$

: $R = 2$

$$(2) \div (1)$$
:

$$\tan \alpha = \frac{1}{\sqrt{3}}$$

$$\therefore \alpha = \frac{\pi}{6}$$

$$\therefore \sqrt{3} \cos \theta - \sin \theta = 2 \cos \left(\theta + \frac{\pi}{3}\right) = 1$$

$$\therefore \cos \left(\theta + \frac{\pi}{6}\right) = \frac{1}{2}$$

$$\theta + \frac{\pi}{6} = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$\therefore \theta = \frac{\pi}{6}, \frac{3\pi}{2}$$

i. (1 mark)
$$T = 20 + Ae^{-kt}$$

$$\therefore T - 20 = Ae^{-kt}$$

$$\frac{dT}{dt} = -k \cdot Ae^{-kt}$$

$$= -k(T - 20)$$

ii. (2 marks)

$$T = 20 + Ae^{-kt}$$

When t = 0, T = 150:

$$150 = 20 + Ae^{0}$$

$$\therefore A = 130$$

$$\therefore T = 20 + 130e^{-kt}$$

When
$$t = 15$$
, $T = 100$

$$100 = 20 + 130e^{-15k}$$

$$\frac{80}{130} = e^{-15k}$$

$$-15k = \log_e \frac{8}{13}$$

$$k = -\frac{1}{15} \log_e \frac{8}{13} \approx 0.032 \text{ (3 dp)}$$

iii. (2 marks)

$$25 = 20 + 130e^{-0.032t}$$

$$\frac{5}{13} = e^{-0.032t}$$

$$-0.032t = \log_e \frac{5}{13}$$

$$t = \frac{1}{-0.032} \log_e \frac{5}{13}$$

$$\approx 100.66 \, \text{min}$$

 $(1)^2 + (2)^2$:

If exact values are used,

$$t \approx 101.82 \,\mathrm{min}$$

= $101 \,\mathrm{min} 49 \,\mathrm{s}$
 $\approx 102 \,\mathrm{min}$

(d) i. (1 mark)

$$v = \sqrt{x}$$

$$\therefore v^2 = x$$

$$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$$

$$= \frac{d}{dx} \left(\frac{1}{2}x\right)$$

$$= \frac{1}{2}$$

which is independent of x.

ii. (2 marks)

$$\frac{dx}{dt} = x^{\frac{1}{2}}$$

Separating variables,

$$\frac{dx}{x^{\frac{1}{2}}} = dt$$

$$\int x^{-\frac{1}{2}} dx = \int dt$$

$$\therefore t = 2x^{\frac{1}{2}} + C$$

When t = 0, x = 1.

$$0 = 2 + C$$

$$\therefore C = -2$$

$$\therefore t = 2x^{\frac{1}{2}} - 2$$

$$2\sqrt{x} = t + 2$$

$$\therefore x = \left(\frac{t+2}{2}\right)^2 \quad \left(=\frac{1}{4}t^2 + t + 1\right)$$

iii. (1 mark)

$$x(2) = \left(\frac{2+2}{2}\right)^2 = 4$$
$$x(3) = \left(\frac{3+2}{2}\right)^2 = \frac{25}{4}$$

Dist travelled $=\frac{25}{4}-4=2.25\,\mathrm{m}$

Question 12 (Lin)

(a) (2 marks)Let $t = \tan\left(\frac{\theta}{2}\right)$:

$$\frac{\sin x}{1 - \cos x} = \frac{\frac{2t}{1 + t^2}}{1 - \left(\frac{1 - t^2}{1 + t^2}\right)}$$

$$= \frac{\frac{2t}{1 + t^2 - (1 - t^2)}}{\frac{1 + t^2 - (1 - t^2)}{1 + t^2}}$$

$$= \frac{2t}{2t^2}$$

$$= \frac{1}{t} = \cot \frac{x}{2}$$

(b) (4 marks)

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} \, dx$$

Let $u = \sin^2 x$:

$$\frac{du}{dx} = 2\sin x \cos x = \sin 2x$$

 $\therefore du = \sin 2x \, dx$

$$x = \frac{\pi}{4}$$
 $\to u = \sin^2 \frac{\pi}{4} = \frac{1}{2}$
 $x = \frac{\pi}{3}$ $\to u = \sin^2 \frac{\pi}{3} = \frac{3}{4}$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} dx = \int_{u = \frac{1}{2}}^{u = \frac{3}{4}} \frac{1}{1 + u} du$$

$$= \left[\log_e (1 + u) \right]_{\frac{1}{2}}^{\frac{3}{4}}$$

$$= \log_e \left(\frac{7}{4} \right) - \log_e \left(\frac{3}{2} \right)$$

$$= \log_e \frac{\frac{7}{4}}{\frac{3}{2}} = \log_e \frac{7}{6}$$

i. (3 marks)

ii. (2 marks)

(S) Question 13 (Berry)
$$y = x^2 - 2x$$
 $x > 1$

Interchanging variables,

$$x = y^2 - 2y \quad y \ge 1$$

$$x + 1 = y^2 - 2y + 1$$

$$\therefore (y - 1)^2 = x + 1$$

$$y - 1 = \sqrt{x + 1} \text{ (as } y \ge 1, \text{ take positive root)}$$

$$\therefore y = 1 + \sqrt{x + 1}$$

iii. (1 mark)
$$f^{-1}(2) = 1 + \sqrt{2+1} = 1 + \sqrt{3}$$

(d) (3 marks) Let P(n) be the proposition

$$P(n): \quad 2 \times 1 + 3 \times 2 + 4 \times 3 + \dots + n(n-1)$$
$$= \frac{n(n^2 - 1)}{3}$$

• Base case: P(2) –

$$2(2-1) = 2$$

$$\frac{2(2^2-1)}{3} = \frac{2\times 3}{3} = 2$$

Hence P(2) is true.

• Inductive hypothesis: assume that P(k) is true for some $k \in \mathbb{Z}^+$, i.e.

$$P(k): 2 \times 1 + 3 \times 2 + 4 \times 3 + \dots + k(k-1)$$

= $\frac{k(k^2 - 1)}{3}$

Now examine P(k+1):

$$\underbrace{(k+1)(k+1)-1}_{P(k)}$$

$$= \frac{k(k^2-1)}{3} + k(k+1)$$

$$= \frac{k(k-1)(k+1) + 3k(k+1)}{3}$$

$$= \frac{(k+1)(k^2-k+3k)}{3}$$

$$= \frac{(k+1)(k^2+2k)}{3}$$

$$= \frac{(k+1)(k^2+2k+1-1)}{3}$$

$$= \frac{(k+1)(k^2+2k+1-1)}{3}$$

(a) i. (2 marks)

$$\sin 3\theta = \sin(2\theta + \theta)$$

$$= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$$

$$= 2\sin \theta \cos \theta \cos \theta + (\cos^2 \theta - \sin^2 \theta) \sin \theta$$

$$= 2\sin \theta \cos^2 \theta + \sin \theta \cos^2 \theta - \sin^3 \theta$$

$$= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta (1 - \sin^2 \theta) - \sin^3 \theta$$

$$= 2\sin \theta - 2\sin^3 \theta + \sin \theta - \sin^3 \theta - \sin^3 \theta$$

$$= 3\sin \theta - 4\sin^3 \theta$$

ii. (1 mark)

$$\int 2\sin^3\theta \, d\theta = \frac{1}{2} \int 4\sin^3\theta \, d\theta$$
$$= \frac{1}{2} \int (3\sin\theta - \sin 3\theta) \, d\theta$$
$$= \frac{1}{2} \left[-3\cos\theta + \frac{1}{3}\cos 3\theta \right] + C$$
$$= \frac{1}{6}\cos 3\theta - \frac{3}{2}\cos\theta + C$$

i. (2 marks)

(b)

$$P(x) = ax^3 - 7x^2 + k(4) + 4$$

As (x-4) is a factor, by the factor theorem:

$$P(4) = 0$$

$$\therefore a \times (4^3) - 7(4^2) + 4k + 4 = 0$$

$$64a - 112 + 4k + 4 = 0$$

$$16a + k - 27 = 0$$

Using the remainder theorem,

$$P(1) = -6$$

$$\therefore a(1^3) - 7(1^2) + k(1) + 4 = -6$$

$$a - 7 + k + 4 = -6$$

$$a + k - 3 = -6$$

$$k = -3 - a$$

$$\begin{cases} 16a + k = 27 & (1) \\ k = -3 - a & (2) \end{cases}$$

Substitute (2) to (1):

$$16a + (-3 - a) = 27$$
$$15a = 30$$
$$a = 2$$
$$\therefore k = -5$$

ii. (2 marks)

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$$

$$= \frac{\left(\frac{c}{a}\right)}{\left(-\frac{d}{a}\right)} = \frac{\left(\frac{-5}{2}\right)}{\left(-\frac{4}{2}\right)}$$

$$= \frac{5}{4}$$

- (c) i. (1 mark)

 The angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment.
 - ii. (2 marks)
 - $\angle AEF = 180^{\circ} \angle EAC$ (Cointerior angles, $AC \parallel EF$)
 - $\angle AEF = 180^{\circ} \angle ABC$ (Since $\angle EAC = \angle ABC$)
 - iii. (1 mark)
 - $\angle EAB = 90^{\circ}$ (The tangent to a circle is perpendicular to the diameter drawn to the point of contact)
 - ∴ BE is the diameter of the the circle through E, A, B and F as it subtends a right angle at the circumference of the circle at point A.

(d) i. (2 marks)
$$x^2 = 4ay$$

$$y = \frac{x^2}{4a}$$

$$\frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a}$$

At the point $P(2at, at^2)$

$$m_{\tan} = \frac{2at}{2a} = t$$
$$\therefore m_{\perp} = -\frac{1}{t}$$

Apply the point-gradient formula,

$$y - y_1 = m(x - x_1)$$
$$y - at^2 = -\frac{1}{t}(x - 2at)$$
$$ty - at^3 = -x + 2at$$
$$x + ty = 2at + at^3$$

ii. (2 marks) Find point N by letting x = 0:

$$0 + ty = 2at + at^{3}$$

$$\therefore y = 2a + at^{2} \qquad (t \neq 0)$$

Finding the midpoint M of PN

$$M = \left(\frac{0+2at}{2}, \frac{2a+at^2+at^2}{2}\right)$$
$$= \left(\frac{2at}{2}, \frac{2at+2at^2}{2}\right)$$
$$= \left(at, a+at^2\right)$$
$$\begin{cases} x = at & (1) \\ y = a+at^2 & (2) \end{cases}$$

Substitute (1) into (2) after rearranging,

$$y = a + a \left(\frac{x}{a}\right)^2$$

$$= a + \frac{x^2}{a}$$

$$\therefore ay = a^2 + x^2$$

$$x^2 = ay - a^2 = a(y - a)$$

Question 14 (Lam)

(a) i. (2 marks)

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$V = \frac{4}{3}\pi r^3 \quad \frac{dr}{dt} = 6 \text{ cms}^{-1}$$

$$\frac{dV}{dt} = 4\pi r^2$$

$$\frac{dV}{dt} = 4\pi r^2 \times 6 \Big|_{r=4}$$

$$= 4 \times \pi \times 4^2 \times 6$$

$$= 384\pi$$

ii. (3 marks)

$$A = 4\pi r^{2} \qquad \frac{dA}{dr} = 8\pi r$$

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$15 = 4\pi r^{2} \times 6$$

$$\frac{15}{24\pi} = r^{2}$$

$$\therefore r = \sqrt{\frac{5}{8\pi}}$$

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$= 8\pi r \times 6$$

$$= 8\pi \times \sqrt{\frac{5}{8\pi}} \times 6$$

$$= \sqrt{1440\pi}$$

$$= 67.3 \text{ cm}^{2} \text{s}^{-1} \text{ (1 dp)}$$

(b) i. (3 marks)

• In $\triangle OHX$

$$\frac{h}{x} = \tan 31^{\circ}$$

$$\therefore x = \frac{h}{\tan 31^{\circ}}$$

• Similarly in $\triangle OHY$,

$$\frac{h}{y} = \tan 25^{\circ}$$

$$\therefore y = \frac{h}{\tan 25^{\circ}}$$

• In $\triangle OXY$,

$$x^{2} + 150^{2} = y^{2}$$

$$\left(\frac{h}{\tan 31^{\circ}}\right)^{2} + 150^{2} = \left(\frac{h}{\tan 25^{\circ}}\right)^{2}$$

$$\left(\frac{h}{\tan 25^{\circ}}\right)^{2} - \left(\frac{h}{\tan 31^{\circ}}\right)^{2} = 150^{2}$$

$$h^{2} \left(\frac{1}{\tan^{2} 25^{\circ}} - \frac{1}{\tan^{2} 31^{\circ}}\right) = 150^{2}$$

$$h^{2} \left(\frac{\tan^{2} 31^{\circ} - \tan^{2} 25^{\circ}}{\tan^{2} 25^{\circ} \tan^{2} 31^{\circ}}\right) = 150^{2}$$

$$h^{2} = \frac{150^{2} \tan^{2} 25^{\circ} \tan^{2} 31^{\circ}}{\tan^{2} 31^{\circ} - \tan^{2} 25^{\circ}}$$

$$\therefore h = \frac{150 \tan 25^{\circ} \tan 31^{\circ}}{\sqrt{\tan^{2} 31^{\circ} - \tan^{2} 25^{\circ}}}$$

ii. (1 mark)

 $h = 110.91 \,\mathrm{m} \, (2 \,\mathrm{dp})$

(c) i. (2 marks)

 $\angle COB = 2\theta$ as angle at the centre is twice the angle at the circumference, subtended by the same arc. (Can also use angle sum of \triangle and exterior \angle)

$$A_{\text{sector }OBC} + A_{\triangle OAC} = \frac{1}{4}\pi r^2$$

$$A_{\text{sector }OBC} = \frac{1}{2}r^2 \times (2\theta)$$

$$= r^2\theta = \theta \quad (r = 1)$$

$$A_{\triangle OBC} = \frac{1}{2}r^2 \times \sin(\pi - 2\theta)$$

$$= \frac{1}{2}r^2 \sin 2\theta = \frac{1}{2}\sin 2\theta$$

 $(\operatorname{As}\,\sin(\pi-x) = \sin x)$

Adding areas and equating,

$$\theta + \frac{1}{2}\sin 2\theta = \frac{\pi}{4}$$
$$\therefore \theta + \frac{1}{2}\sin 2\theta - \frac{\pi}{4} = 0$$

- ii. (2 marks)
 - When $\theta = 0.4$,

$$0.4 + \frac{1}{2}\sin 0.8 - \frac{\pi}{4} \approx -0.026 \cdots$$

• When $\theta = 0.5$,

$$0.5 + \frac{1}{2}\sin 1 - \frac{\pi}{4} \approx 0.135$$

If $f(\theta) = \theta + \frac{1}{2}\sin 2\theta - \frac{\pi}{4}$, then $f(\theta)$ is continuous for all $x \in \mathbb{R}$ as θ and $\sin 2\theta$ are both continuous. From above, f(0.4) < 0 and f(0.5) > 0, therefore a zero crossing exists for $0.4 < \theta < 0.5$, satisfying the equation found in part (i).

iii. (2 marks)

$$f(\theta) = \theta + \frac{1}{2}\sin 2\theta - \frac{\pi}{4}$$

$$f'(\theta) = 1 + \frac{1}{2} \times 2\cos 2\theta$$

$$= 1 + \cos 2\theta$$

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$$

$$= 0.4 - \frac{0.4 + \frac{1}{2}\sin 0.8 - \frac{\pi}{4}}{1 + \cos 0.8}$$

$$\left(= 0.4 - \frac{-0.02672011 \cdots}{1.696706 \cdots}\right)$$

$$= 0.41574 \cdots$$

$$= 0.42 (2 dp)$$