The King’s School

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Answer each question in a separate booklet

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Blank Page

Y12 THSC Maths Ext 20808

Total marks - $\mathbf{1 2 0}$
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \tan ^{2} x d x$
(b) Find $\int \frac{x}{x+1} d x$
(c) (i) Let $F(x)$ be a primitive function of $f(x)$. Hence, or otherwise, show that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

(ii) Show that $\int_{0}^{\pi} x \sin x d x=\frac{\pi}{2} \int_{0}^{\pi} \sin x d x$
(iii) Use integration by parts to evaluate $\int_{0}^{\pi} x^{2} \cos x d x$
(d) (i) Find $\int \frac{d t}{(2 t+1)^{2}+1}$
(ii) Use the substitution $t=\tan \frac{\theta}{2}$ to show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2 \sin \theta-\cos \theta+3}=\tan ^{-1}\left(\frac{1}{2}\right)
$$

End of Question 1

(a) (i) Find $|\sqrt{7}+\sqrt{33} i|$
(ii) $x+i y=\frac{\sqrt{7}+\sqrt{33} i}{3-i}$

Find the value of $x^{2}+y^{2}$
(b) Precisely show on the Argand diagram the locus of the complex numbers z such that $|z-i|=1$ and $|z| \leq 1$ hold simultaneously.
(c) Let $z=1-\cos 2 \theta+i \sin 2 \theta, 0<\theta<\frac{\pi}{2}$
(i) Show that $z=2 \sin \theta(\sin \theta+i \cos \theta)$
(ii) Hence find $|z|$ and $\arg z$
(d)

The diagram shows the equilateral triangle OAB in the complex plane.
O is the origin and points A, B represent the complex numbers α, β, respectively.
Let $v=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$
(i) Write down the complex number $\overrightarrow{\mathrm{BA}}$
(ii) Show that $\alpha=v(\alpha-\beta)$
(iii) Prove that $\alpha^{2}+\beta^{2}=\alpha \beta$

End of Question 2

Question 3 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet.
(a) For the hyperbola $(y+1)^{2}-x^{2}=1$, prove that $\frac{d^{2} y}{d x^{2}}=\frac{1}{(y+1)^{3}}$
(b) Let $P(x)=x^{4}-2 A x^{3}+B$, where $A \neq 0$
$P(x)=0$ has the roots α, β, γ and $\alpha+\beta+\gamma$
(i) Deduce that $B=A^{4}$
(ii) Find, in simplest form, $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) Let $(1+x)^{2008}=u_{1}+u_{2}+\ldots+u_{k}+u_{k+1}+\ldots+u_{2009}, \quad x>0$
(i) Show that $\frac{u_{k+1}}{u_{k}}=\frac{2009-k}{k} . x$
(ii) The middle term in the expansion of $(1+x)^{2008}$ is the greatest term.

Deduce that $\frac{1004}{1005}<x<\frac{1005}{1004}$

End of Question 3

(a) (i) Sketch the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ showing its foci, directrices and asymptotes. 4
(ii) A particular solid has as its base the region bounded by the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ and the line $x=4$.

Cross-sections perpendicular to this base and the x axis are equilateral triangles.

Find the volume of this solid.
(b) A particle moves on the x axis according to the acceleration equation of motion $\ddot{x}=x$. Initially the particle is at the origin with velocity $v=2$.
(i) Explain why the velocity will always increase.
(ii) By integration, prove that $v=\sqrt{x^{2}+4}$
(iii) By using the table of standard integrals, or otherwise, find the displacement x as a function of time t.

End of Question 4

(a)

Two pieces of light inextensible string AC of length 6 metres and BC of length 4 metres are attached at two points A and B , respectively. B is 4 metres vertically below A.

At C a mass of 4 kg is attached to the strings and this mass rotates in uniform circular motion of $3 \mathrm{rad} / \mathrm{s}$ about a point O which is vertically below B. Take $10 \mathrm{~m} / \mathrm{s}^{2}$ as the acceleration due to gravity.

Let the tensions in the strings AC and BC be T_{1} Newtons and T_{2} Newtons, respectively, and let $\angle \mathrm{BAC}=\theta$
(i) Show that $\cos \theta=\frac{3}{4}$
(ii) Be resolving forces at C in the vertical direction, show that $6 T_{1}+T_{2}=320$
(iii) Find the tensions in the strings.

Question 5 continues on the next page
(b) (i) Show that $\int_{1}^{\sqrt{2}} x \sqrt{2-x^{2}} d x=\frac{1}{3}$
(ii) By considering the circle $x^{2}+y^{2}=2$, or otherwise, show that

$$
\int_{1}^{\sqrt{2}} \sqrt{2-x^{2}} d x=\frac{\pi}{4}-\frac{1}{2}
$$

(iii)

The minor segment of the circle $x^{2}+y^{2}=2$ bounded by the chord $x=1$ is revolved about that chord.

Use the method of cylindrical shells to find the volume of the solid generated.

End of Question 5

(a)

A particle of mass m is projected vertically upwards with speed V in a medium where there is a resistance $m g k^{2} v^{2}$ when v is its speed. g is the acceleration due to gravity and k is a positive constant.

Take $x=0$ and $v=V$ when $t=0$
The particle reaches a maximum height X when the time is T.
(i) Show that the equation of motion is given by $\ddot{x}=-g\left(1+k^{2} v^{2}\right)$
(ii) Show that $X=\frac{1}{2 g k^{2}} \ln \left(1+k^{2} V^{2}\right)$
(iii) Show that $T=\frac{1}{g k} \tan ^{-1}(k V)$
(iv) If the only force acting on the particle is due to gravity the equations of motion are:

$$
\begin{aligned}
\ddot{x} & =-g \\
\dot{x} & =-g t+V \\
x & =-\frac{g t^{2}}{2}+V t
\end{aligned}
$$

[DO NOT SHOW THESE]
Deduce that $\lim _{k \rightarrow 0} \frac{\ln \left(1+k^{2} V^{2}\right)}{k^{2}}=V^{2}$

Question 6 continues next page

(b) (i) Use the results $z+\bar{z}=2 \operatorname{Re}(z)$ and $|z|^{2}=z \bar{z}$ for complex numbers z to show that $|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}=2 \operatorname{Re}(\alpha \bar{\beta})$
(ii)

The diagram shows the angle θ between the complex numbers α and β.
Prove that $|\alpha||\beta| \cos \theta=\operatorname{Re}(\alpha \bar{\beta})$

End of Question 6

(a)

The diagram shows the circle $x^{2}+y^{2}=a^{2}$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a>b>0$
$P(a \cos \theta, b \sin \theta), \quad \theta \neq-\frac{\pi}{2}, \frac{\pi}{2}$, is a point on the ellipse. $P N$ is perpendicular to the x axis at N and meets the circle at Q in the same quadrant.

O is the origin.
(i) Write down the coordinates of Q.
(ii) Show that the equation of the tangent at $P(a \cos \theta, b \sin \theta)$ on the ellipse is

$$
\frac{\cos \theta}{a} x+\frac{\sin \theta}{b} y=1
$$

(iii) Hence, or otherwise, find the equation of the tangent at the point Q on the circle.
(iv) The tangents at P and Q meet at T. Prove that $O N . O T=a^{2}$.

Question 7 continues on the next page

(b) Let $u_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta, \quad n=0,1,2, \ldots$
(i) Explain why $u_{n}<u_{n-1}<u_{n-2}$
(ii) Prove that $u_{n}=\frac{n-1}{n} u_{n-2}, \quad n=2,3,4, \ldots$
(iii) Deduce that $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} u_{n-1}$
(iv) Use (ii) to show that $n u_{n} u_{n-1}=\frac{\pi}{2}, n=1,2,3, \ldots$
(v) Given that $\int_{0}^{\frac{\pi}{2}} \cos ^{11} \theta d \theta=\frac{256}{693}$,
evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{10} \theta d \theta$
(vi) Find an approximate value of $\int_{0}^{\frac{\pi}{2}} \cos ^{2008} \theta d \theta$

End of Question 7

(a) Let $\frac{(x+a)(x+b)(x+c)}{(x-a)(x-b)(x-c)} \equiv k+\frac{p}{x-a}+\frac{q}{x-b}+\frac{t}{x-c}$
(i) Explain why $k=1$
(ii) Show that $p=\frac{2 a(a+b)(a+c)}{(a-b)(a-c)}$ and write down expressions for q and t.
(iii) Hence, or otherwise, prove that

$$
\begin{equation*}
\frac{(a+b)(a+c)}{(a-b)(a-c)}+\frac{2 b(b+c)}{(b-a)(b-c)}+\frac{2 c(c+b)}{(c-a)(c-b)}=1 \tag{2}
\end{equation*}
$$

Question 8 continues on the next page

(b) The roots of $x^{4}+x^{3}+2 x^{2}+3 x+1=0 \quad$ are $\alpha, \beta, \gamma, \delta$
(i) Find a polynomial with the roots $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$.
(ii) Hence, or otherwise, show that

$$
\left(\alpha+\frac{1}{\alpha}\right)+\left(\beta+\frac{1}{\beta}\right)+\left(\gamma+\frac{1}{\gamma}\right)+\left(\delta+\frac{1}{\delta}\right)=-4
$$

(iii) Explain why the equation $x^{4}+4 x^{3}+A x^{2}+B x+C=0$ for some A, B, C has the roots $\alpha+\frac{1}{\alpha}, \beta+\frac{1}{\beta}, \gamma+\frac{1}{\gamma}, \delta+\frac{1}{\delta}$
(iv) Hence state the eight roots of the equation

$$
\begin{equation*}
\left(x+\frac{1}{x}\right)^{4}+4\left(x+\frac{1}{x}\right)^{3}+A\left(x+\frac{1}{x}\right)^{2}+B\left(x+\frac{1}{x}\right)+C=0 \tag{1}
\end{equation*}
$$

(v) Use the equation in (iii) to state the four roots of the equation

$$
C x^{4}+B x^{3}+A x^{2}+4 x+1=0
$$

(vi) By multiplying both sides by x^{4}, the equation in (iv) could be expressed as $\left(x^{2}+1\right)^{4}+4 x\left(x^{2}+1\right)^{3}+A x^{2}\left(x^{2}+1\right)^{2}+B x^{3}\left(x^{2}+1\right)+C x^{4}=0$

[DO NOT SHOW THIS]

Hence, by using the polynomial found in (i) and another suitable equation, prove that $B=0$.
(vii) Evaluate $\left(\alpha+\frac{1}{\alpha}\right)^{-1}+\left(\beta+\frac{1}{\beta}\right)^{-1}+\left(\gamma+\frac{1}{\gamma}\right)^{-1}+\left(\delta+\frac{1}{\delta}\right)^{-1}$

End of Examination Paper

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{\mathrm{n}+1}, \quad \mathrm{n} \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note: $\ln x=\log _{e} x, \quad x>0$

The King's School

Mathematics Extension 2

Question	(Marks)	Complex Numbers	Functions	Integration	Conics	Mechanics
1	(15)			15		
2	(15)	15				
3	(15)		15			
4	(15)			(a)(ii) 4	(a)(i) 4	(b) 7
5	(15)			(b) 8		(a) 7
6	(15)	(b) 5				(a) 10
7	(15)			(b) 9	(a) 6	
8	(15)		15			
Total	(120)	20	30	36	10	24

TKS EXTENSION 2 SOLUTONS TRIAL 2008
Question 1
(a) $\int \tan ^{2} x d x=\int \sec ^{2} x-1 d x=\tan x-x$
(l) $\int \frac{x}{x+1} d x=\int \frac{x+1-1}{x+1} d x=\int 1-\frac{1}{1+x} d x=x-\ln (1+x)$
(c)
(i)

$$
\begin{aligned}
\int_{0}^{a} f(a-x) d x=[-F(a-x)]_{0}^{a} & =-F(0)+F(a) \\
& =\int_{0}^{a} f(x) d x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\pi} x \sin x d x & =\int_{0}^{\pi}(\pi-x) \sin (\pi-x) d x \\
& =\int_{0}^{\pi}(\pi-x) \sin x d x \\
& =\pi \int_{0}^{\pi} \sin x d x-\int_{0}^{\pi} x \sin x d x \\
\therefore 2 \int_{0}^{\pi} x \sin x d x & =\pi \int_{0}^{\pi} \sin x d x \Rightarrow \int_{0}^{\pi} x \sin x d x=\frac{\pi}{2} \int_{0}^{\pi} \sin d x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \cos x d x & =\int_{0}^{\pi} x^{2} \frac{d \sin x}{d x} d x \\
& =\left[x^{2} \sin x\right]_{0}^{\pi}-\int_{0}^{\pi} 2 x \sin x d x \\
& =0-\pi \int_{0}^{\pi} \sin x d x \quad \text { from (i) } \\
& =\pi[\cos x]_{0}^{\pi}=\pi(-1-1)=-2 \pi
\end{aligned}
$$

(d) (i) $\frac{1}{2} \tan ^{-1}(2 t+1)$
(ii) $t=\tan \frac{a}{2}$

$$
: \theta=0, t=0
$$

$$
\begin{aligned}
& \frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{\theta}{2}=\frac{1}{2}\left(1+t^{2}\right) \quad \theta=\frac{\pi}{2}, t=1 \\
\therefore I & =\int_{0}^{1} \frac{2 d t}{\left(1+t^{2}\right)\left(\frac{4 t}{1+t^{2}}-\frac{1-t^{2}}{1+t^{2}}+3\right)} \\
& =\int_{0}^{1} \frac{2 d t}{4 t-1+t^{2}+3+3 t^{2}} \\
& =\int_{0}^{1} \frac{2 d t}{4 t^{2}+4 t+2} \\
& =\int_{0}^{1} \frac{2 d t}{(2 t+1)^{2}+1} \\
& =\left[\tan ^{-1}(2 t+1)\right]_{0}^{1} \\
& =\tan ^{-1} 3-\tan ^{-1} 1 \\
& =\tan ^{-1}\left(\frac{3-1}{1+3.1}\right)=\tan ^{-1} \frac{2}{4}=\tan ^{-1} \frac{1}{2}
\end{aligned}
$$

Question 2
(a) (i) $=\sqrt{7+33}=\sqrt{40}$
(ii) $x^{2}+y^{2}=|x+i y|^{2}=\frac{|\sqrt{7}+\sqrt{33} i|^{2}}{|3-i|^{2}}=\frac{40}{10}=4$
(b)

(c) (i)

$$
\begin{aligned}
z & =2 \sin ^{2} \theta+i(2 \sin \theta \cos \theta) \\
& =2 \sin \theta(\sin \theta+i \cos \theta)
\end{aligned}
$$

(ii) $z=2 \sin \theta\left(\cos \left(\frac{\pi}{2}-\theta\right)+i \sin \left(\frac{\pi}{2}-\theta\right)\right)$
$\Rightarrow|z|=2 \sin \theta$, arg $z=\frac{\pi}{2}-\theta$ since $0<\theta<\frac{\pi}{2}$
(d)

(i) $\overrightarrow{B A}=\alpha-\beta$
(ii) $v \overrightarrow{B A}=\overrightarrow{B A}^{\prime}=\alpha$, see diagram

$$
\text { ce: } \alpha=v(\alpha-\beta)
$$

(iii) Now,

$$
\begin{aligned}
& \omega, \beta=v \alpha \\
& \therefore \frac{\alpha}{\beta}=\frac{\alpha-\beta}{\alpha} \\
& \text { or } \alpha^{2}=\alpha \beta-\beta^{2} \\
& \text { ie } \alpha^{2}+\beta^{2}=\alpha \beta
\end{aligned}
$$

Question 3
(a)

$$
\begin{aligned}
& 2(y+1) y^{\prime}-2 x=0 \\
& \therefore y^{\prime}=\frac{x}{y+1} \\
& \therefore y^{\prime \prime}=\frac{y+1-x y^{\prime}}{(y+1)^{2}}=\frac{y+1-\frac{x^{2}}{y+1}}{(y+1)^{2}} \\
& \\
& =\frac{(y+1)^{2}-x^{2}}{(y+1)^{3}}=\frac{1}{(y+1)^{3}}
\end{aligned}
$$

(b)

$$
\text { (i) } \sum \alpha=2(\alpha+\beta+\gamma)=2 A \Rightarrow \alpha+\beta+\gamma=A
$$

But, $\alpha+\beta+\gamma$ is a root

$$
\therefore A^{4}-2 A\left(A^{3}\right)+B=0 \Rightarrow B=A^{4}
$$

$$
\begin{gathered}
\text { (ii) } \alpha^{2}+\beta^{2}+\gamma^{2}+(\alpha+\beta+\gamma)^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta \\
\Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}+A^{2}=(2 A)^{2}-2(0)=4 A^{2} \\
\therefore \alpha^{2}+\beta^{2}+\gamma^{2}=3 A^{2}
\end{gathered}
$$

(c) (i)

$$
\begin{aligned}
\frac{u_{k+1}}{u_{k}}=\frac{\binom{2008}{k} x^{k}}{\binom{2008}{k-1} x^{k-1}} & =\frac{2008!(2009-k)!(k-1)!}{(2008-k)!k!2008!} \cdot x \\
& =\frac{2009-k}{k} \cdot x
\end{aligned}
$$

(ii) The niddle tern is μ_{1005}

$$
\begin{aligned}
\therefore \mu_{1005}>\mu_{1004} \\
\text { or } \frac{\mu_{1005}}{u_{1004}}>1 \Rightarrow \frac{2009-1004}{1004} x>1 \text { from (i) } \\
\text { (e. } x>\frac{1004}{1005}
\end{aligned}
$$

Also $\mu_{1005}>\mu_{1006}$

$$
\Rightarrow \frac{2009-1005}{1005} x<1 \text { from (i) }
$$

$$
\text { (10. } x<\frac{1005}{1004}
$$

1. $\frac{1004}{1005}<x<\frac{1005}{1004}$

Question 4
(a) (i)

$$
\begin{aligned}
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=4+5=9, \quad c & =3 \\
e & =\frac{3}{2}
\end{aligned}
$$

\therefore foci $(\pm 3,0)$, directrices $x= \pm \frac{4}{3}$, asymptotes $\frac{x}{2} \pm \frac{y}{\sqrt{5}}=0$ le $y= \pm \frac{\sqrt{5}}{2} x$

(ii)

Take $P(x, y)$ on curve, $y \geqslant 0$
Than, area Δ with base $p p^{\prime}$

$$
\begin{aligned}
& =\frac{1}{2}(2 y)^{2} \sin \frac{\pi}{3}=\sqrt{3} y^{2} \\
\therefore V & =\int_{2}^{4} \sqrt{3} y^{2} d x \\
& =\sqrt{3} \cdot 5 \int_{2}^{4} \frac{x^{2}}{4}-1 d x \\
& =5 \sqrt{3}\left[\frac{x^{3}}{12}-x\right]_{2}^{4} \\
& =5 \sqrt{3}\left(\frac{16}{3}-4-\frac{2}{3}+2\right) \\
& =\frac{40 \sqrt{3}}{3}
\end{aligned}
$$

(b) (i) Initially $x=0$ and $v>0$
\Rightarrow after $t=0$ then $x>0$ re. $\ddot{x}>0$
$\Rightarrow u$ will increase for all t
(ii)

$$
\begin{aligned}
& \frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=x \\
& \therefore\left[\frac{1}{2} v^{2}\right]_{2}^{v}=\left[\frac{x^{2}}{2}\right]_{0}^{x} \\
& \quad \Omega \frac{1}{2} v^{2}-\frac{2^{2}}{2}=\frac{x^{2}}{2} \\
& o v v^{2}=x^{2}+4 \\
& \therefore v=\sqrt{x^{2}+4} \text { since } v>0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d x}{d t}=\sqrt{x^{2}+4} \\
& \therefore \frac{d t}{d x}=\frac{1}{\sqrt{x^{2}+4}} \\
& t=\int_{0}^{x} \frac{1}{\sqrt{x^{2}+4}} d x=\left(\ln \left(x+\sqrt{x^{2}+4}\right)\right]_{0}^{x} \\
& \text { ie. } t=\ln \left(\frac{x+\sqrt{x^{2}+4}}{2}\right) \\
& \therefore \frac{x+\sqrt{x^{2}+4}}{2}=e^{t} \\
& \text { or } \sqrt{x^{2}+4}=2 e^{t}-x \\
& \therefore x^{2}+4=4 e^{2 t}-4 e^{t} x+x^{2} \\
& \Rightarrow 1=e^{2 t}-e^{t} x \\
& \quad \sim x=\frac{e^{2 t}-1}{e^{t}}=e^{t}-e^{-t}
\end{aligned}
$$

Question 5
(a) (i)

$$
\Rightarrow \cos \theta=\frac{3}{4}
$$

(ii)

$$
\begin{aligned}
& T_{1} \cos \theta+T_{2} \cos 2 \theta=40 \\
& \therefore T_{1} \cos \theta+T_{2}\left(2 \cos ^{2} \theta-1\right)=40 \\
& \Rightarrow \frac{3}{4} T_{1}+T_{2}\left(\frac{9}{8}-1\right)=40 \\
& \text { i.e. } 6 T_{1}+T_{2}=320
\end{aligned}
$$

(iii) Resolving in the diriction CO ,

$$
4 \cdot 3^{2} \cdot O C=T_{1} \cos \left(\frac{\pi}{2}-\theta\right)+T_{2} \cos \left(\frac{\pi}{2}-2 \theta\right)
$$

where $O C=4 \sin 2 \theta$

$$
\begin{aligned}
\therefore \text { 16.9. } \sin 2 \theta & =T_{1} \sin \theta+T_{2} \sin 2 \theta \\
\Rightarrow 16 \cdot 9 \cdot 2 \cos \theta & =T_{1}+T_{2} 2 \cos \theta \\
& \text { or } 216=T_{1}+T_{2} \cdot \frac{3}{2}
\end{aligned}
$$

\therefore Fron (ii), $6\left(216-\frac{3 T_{2}}{2}\right)+T_{2}=320$

$$
\begin{aligned}
& 1296-9 T_{2}+T_{2}=320 \\
& \sim \quad T_{2}=\frac{1296-320}{8}=122 \mathrm{~N} \\
& \& T_{1}=216-\frac{3}{2} \times 122 \mathrm{~N}=33 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{array}{rl}
\text { (i) put } u=2-x^{2} & : x=1, u=1 \\
\frac{d u}{d x}=-2 x & x=\sqrt{2}, u=0 \\
\therefore I=\frac{1}{2} \int_{0}^{1} \sqrt{u} d u=\frac{1}{3}\left[u^{3 / 2}\right]_{0}^{1}=\frac{1}{3}
\end{array}
$$

(ii)

\therefore Shaded area

$$
\begin{aligned}
& =\int_{1}^{\sqrt{2}} \sqrt{2-x^{2}} d x \\
& =\frac{1}{2}\left[\frac{\pi(\sqrt{2})^{2}}{4}-\frac{1}{2}(\sqrt{2})^{2}\right] \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

(iii)

Take $P(x, y), y \geqslant 0$, in circle
Than, $\delta V \approx \pi\left((x+\delta x-1)^{2}-(x-1)^{2}\right) 2 y$

$$
\approx 2 \pi y 2(x-1) \delta x
$$

$$
\Rightarrow V=4 \pi \int_{1}^{\sqrt{2}}(x-1) y d x
$$

ie $V=4 \pi \int_{1}^{\sqrt{2}}(x-1) \sqrt{2-x^{2}} d x$

$$
\begin{aligned}
& =4 \pi \int_{1}^{\sqrt{2}} x \sqrt{2-x^{2}}-\sqrt{2-x^{2}} d x \\
& =4 \pi\left(\frac{1}{3}-\left(\frac{\pi}{4}-\frac{1}{2}\right)\right) \text { from (i) }+(i i) \\
& =4 \pi\left(\frac{5}{6}-\frac{\pi}{4}\right)=\frac{\pi}{3}(10-3 \pi)
\end{aligned}
$$

Question 6
(a) (i)

$$
\begin{aligned}
& \mu \ddot{x}=-\mu g-\mu g k^{2} v^{2} \\
& \Rightarrow \ddot{x}=-g\left(1+k^{2} v^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \ddot{x}=v \frac{d v}{d x}=-g\left(1+k^{2} v^{2}\right) \\
& \Rightarrow \frac{d v}{d x}=-g\left(\frac{1+k^{2} v^{2}}{v}\right) \\
& \therefore-g \frac{d x}{d v}=\frac{v}{1+k^{2} v^{2}} \\
& \therefore-g[x]_{0}^{x}=\int_{V}^{0} \frac{v}{1+k^{2} v^{2}} d v \\
& \text { ie. }-g X=\frac{1}{2 k^{2}}\left[\ln \left(1+k^{2} u^{2}\right)\right]_{v}^{0} \\
& =\frac{1}{2 k^{2}}\left(0-\ln \left(1+k^{2} v^{2}\right)\right) \\
& \therefore \quad x=\frac{1}{2 g k^{2}} \ln \left(1+k^{2} v^{2}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\ddot{x} & =\frac{d v}{d t}=-g\left(1+k^{2} v^{2}\right) \\
\therefore-g \frac{d t}{d v} & =\frac{1}{1+k^{2} v^{2}} \\
\Rightarrow-g[t]_{0}^{T} & =\frac{1}{k}\left[\tan ^{-1} k v\right]_{v}^{0} \\
\Leftrightarrow-g T & =\frac{1}{k}\left(0-\tan ^{-1} k v\right) \\
\therefore T & =\frac{1}{g k} \tan ^{-1}(k v)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \dot{x}=0 \Rightarrow t=\frac{v}{g} \\
& \therefore x_{\text {max }}=-\frac{g}{2} \cdot \frac{v^{2}}{g^{2}}+v \cdot \frac{v}{g}=\frac{v^{2}}{2 g} \\
& \therefore \text { from (ii), } \lim _{k \rightarrow 0} \frac{1}{2 g k^{2}} \ln \left(1+k^{2} v^{2}\right)=\frac{v^{2}}{2 g} \\
& \text { ai } \lim _{k \rightarrow 0} \frac{\ln \left(1+k^{2} v^{2}\right)}{k^{2}}=v^{2}
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& |\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2} \\
& =\alpha \bar{L}+\beta \bar{\beta}-(\alpha-\beta)(\overline{\alpha-\beta}) \\
& =\alpha \bar{\alpha}+\beta \bar{\beta}-(\alpha-\beta)(\bar{\alpha}-\bar{\beta}) \\
& =\alpha \bar{L}+\beta \bar{\beta}-(\alpha \bar{\alpha}-\alpha \bar{\beta}-\bar{\alpha} \beta+\beta \bar{\beta}) \\
& =\alpha \bar{\beta}+\bar{\alpha} \beta \\
& =\alpha \bar{\beta}+(\bar{\alpha} \bar{\beta})=2 \operatorname{Re}(\alpha \bar{\beta})
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \cos \theta=\frac{|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}}{2|\alpha||\beta|} \text { since } \overrightarrow{\beta A}=\alpha-\beta \\
&=\frac{2 \operatorname{Re}(\alpha \bar{\beta})}{2|\alpha||\beta|} \\
& \Rightarrow|\alpha||\beta| \cos \theta=\operatorname{Re}(\alpha \bar{\beta})
\end{aligned}
$$

Question 7
(a) (i) $Q=(a \cos \theta, a \sin \theta)$
(ii)

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x} & =-\frac{b^{2} x}{a^{2} y} \\
& =-\frac{b^{2}}{a^{2}} \cdot \frac{a \cos \theta}{b \sin \theta} \text { at } P \\
& =-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

$$
\begin{array}{r}
\therefore \text { tangent at } P \text { is } y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
\text { or } \frac{\sin ^{\prime} \theta}{b} y-\sin ^{2} \theta=-\frac{\cos \theta}{a} x+\cos ^{2} \theta \\
\text { ie. } \frac{\cos \theta}{a} x+\frac{\sin \theta}{b} y=\cos ^{2} \theta+\sin ^{2} \theta=1
\end{array}
$$

(iii) (ii) \Rightarrow tangent at Q is $\frac{\cos \theta}{a} x+\frac{\sin \theta}{a} y=1 \quad[4 i a=b]$
(iv) at $T,\left(\frac{\sin \theta}{b}-\frac{\sin \theta}{a}\right) y=0 \Rightarrow y=0$

$$
\therefore \quad x=\frac{a}{\cos \theta}=a \sec \theta
$$

10. we Lave

$$
\begin{aligned}
& \frac{0}{N(a \cos \theta, 0)} \frac{\cdot}{T(a \sec \theta, 0)} \\
& \therefore O N \cdot O T=|a \cos \theta||a \sec \theta|=a^{2}
\end{aligned}
$$

(b)
(i)

$$
\text { For } \begin{aligned}
0 & <x<\frac{\pi}{2} \quad, 0<\cos x<1 \\
& \therefore \cos ^{n} x<\cos ^{n-1} x<\cos ^{n-2} x \\
& \Rightarrow \mu_{n}<u_{n-1}<u_{n-2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& u_{n}=\int_{0}^{\frac{\pi}{2}} \cos \theta \cos ^{n-1} \theta d \theta \\
&=\int_{0}^{\pi / 2} \cos ^{n-1} \theta \frac{d \sin \theta}{d \theta} d \theta \quad \text { where } \mu=\cos ^{n-1} \theta \\
&=\left[\cos ^{n-1} \theta \sin \theta\right]_{0}^{\pi / 2}+\int_{0}^{\pi / 2}(n-1) \cos ^{n-2} \theta \sin ^{2} \theta d \theta \\
&=0+(n-1) \int_{0}^{\pi / 2} \cos ^{n-2} \theta\left(1-\cos ^{2} \theta\right) d \theta \\
&=(n-1)\left(\mu_{n-2}-\mu_{n}\right) \quad \cos ^{n-2} \theta \\
& \therefore \mu_{n}(1+n-1)=(n-1) u_{n-2} \quad \text { ie. } \mu_{n}=\frac{n-1}{n} u_{n-2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mu_{n}=\left(1-\frac{1}{n}\right) u_{n-2} \\
& \therefore \quad \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} u_{n-2} \Rightarrow \text { from }(i), \\
& \quad \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} u_{n-1}
\end{aligned}
$$

(iv) From (ii),

$$
\begin{aligned}
n u_{n} u_{n-1} & =(n-1) u_{n-1} u_{n-2} \\
& =(n-2) u_{n-2} u_{n-2} \\
& =\cdots \cdot \\
& =\cdots u_{1} u_{0} \\
& =\int_{0}^{\pi / 2} \cos \theta d \theta \int_{0}^{\pi / 2} 1 d \theta \\
& =[\sin \theta]_{0}^{\pi r}[\theta]_{0}^{\pi r} \\
& =1 \cdot \frac{\pi}{2}=\frac{\pi}{2}
\end{aligned}
$$

(v) from (iv), $11 u_{11} u_{10}=\frac{\pi}{2}$

$$
\therefore \mu_{10}=\frac{\pi}{22} \cdot \frac{693}{256}=\frac{63 \pi}{512}
$$

(vi) From (iii) and (ii), for large n,

$$
\begin{aligned}
& n u_{n} \mu_{n-1} \approx n \mu_{n}^{2} \\
& \therefore 2008 \mu_{2000}^{2} \approx \frac{\pi}{2} \\
& \therefore \quad \mu_{2008} \approx \sqrt{\frac{\pi}{4016}}[\approx 0.028]
\end{aligned}
$$

or, of course, $2009 \mu_{2008}^{2}=\frac{\pi}{2}$

$$
\Rightarrow u_{2008} \simeq \sqrt{\frac{\pi}{4018}}
$$

Indeed, $\sqrt{\frac{\pi}{4018}}<\mu_{2008}<\sqrt{\frac{\pi}{4016}}$

Question 8
(a) (i) $(x+a)(x+b)(x+c)$ and $(x-a)(x-d)(x-c)$ both Lave the same leading tern $x^{3} \Rightarrow k=1$
(ii) $\frac{(x+a)(x+b)(x+c)}{(x-a)(x-c)}=x-a+p+\frac{2(x-a)}{x-b}+\frac{t(x-a)}{x-c}$

$$
\text { For } \begin{aligned}
x & =a, \frac{2 a(a+b)(a+c)}{(a-b)(a-c)}=p \\
\therefore q & =\frac{2 b(b+a)(l+c)}{(b-a)(b-c)} \\
\quad t & =\frac{2 c(c+a)(c+b)}{(c-a)(c-b)} \text {, on symmetry. }
\end{aligned}
$$

(iii) Put $x=-a$, than,

$$
\begin{aligned}
0 & =1-\frac{p}{2 a}-\frac{q}{a+b}-\frac{t}{a+c} \\
\Rightarrow & 0=1-\frac{(a+b)(a+c)}{(a-b)(a-c)}-\frac{2 b(b+c)}{(b-a)(b-c)}-\frac{2 c(c+b)}{(c-a)(c-b)} \\
\therefore & \frac{(a+b)(a+c)}{(a-b)(a-c)}+\frac{2 b(b+c)}{(b-a)(b-c)}+\frac{2 c(c+b)}{(c-a)(c-b)}=1
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \left(\frac{1}{x}\right)^{4}+\left(\frac{1}{x}\right)^{3}+2\left(\frac{1}{x}\right)^{2}+3\left(\frac{1}{x}\right)+1=0 \\
& \text { ie. } x^{4}+3 x^{3}+2 x^{2}+x+1=0
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\sum \alpha=-1, \quad \sum \frac{1}{\alpha}=-3 \\
\therefore \sum\left(\alpha+\frac{1}{\alpha}\right)=-4
\end{gathered}
$$

(iii) The sum of the roots of the quartic is -4
\therefore result from (ii)
(iv) $\alpha, \frac{1}{\alpha}, \beta, \frac{1}{\beta}, \gamma, \frac{1}{\gamma}, \delta, \frac{1}{\delta}$
(v) $\left(\alpha+\frac{1}{\alpha}\right)^{-1},\left(\beta+\frac{1}{\beta}\right)^{-1},\left(\gamma+\frac{1}{\gamma}\right)^{-1},\left(\delta+\frac{1}{\delta}\right)^{-1}$
(vi) $\left(x^{4}+x^{3}+2 x^{2}+3 x+1\right)\left(x^{4}+3 x^{3}+2 x^{2}+x+1\right)=0$ has
she roots $\alpha, \frac{1}{\alpha}, \cdots, \delta, \frac{1}{\delta}$

$$
\equiv\left(x^{2}+1\right)^{4}+4 x\left(x^{2}+1\right)^{3}+A x^{2}\left(x^{2}+1\right)^{2}+B x^{3}\left(x^{2}+1\right)+C x^{4}
$$

from (iv)
\therefore Equating coefficients of x^{5},

$$
\begin{gathered}
1+2+6+3=12+B \\
\therefore B=0
\end{gathered}
$$

(vii) From $(v), \sum\left(\alpha+\frac{1}{\alpha}\right)^{-1}=-\frac{B}{c}=0$ from (vi)

* Note $c \neq 0$ since $\alpha+\frac{1}{\alpha} \neq 0$

