

2010 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 84

- Attempt questions 1-7
- All questions are of equal value

Question	1	2	3	4	5	6	7	Total	%
Marks	/12	/12	/12	/12	/12	/12	/12	/84	

Question 1 (12 marks)

Start a new sheet of writing paper.

Marks

a) Show that
$$\lim_{x\to 0} \frac{3x}{\tan 2x} = \frac{3}{2}$$
.

1

$$\int_{0}^{\frac{\pi}{8}} \sin^2 4x \ dx$$

3

c) Solve
$$\frac{4x-3}{x} \ge 5$$

3

d) Find the acute angle between the lines y = -x - 1 and 4x + 5y = 2. Answer to the nearest minute. 3

e) Using $t = \tan \frac{\theta}{2}$, find the exact value of $\frac{1 - \tan^2 15^{\circ}}{1 + \tan^2 15^{\circ}}$ showing all working.

2

Question 2 (12 marks)

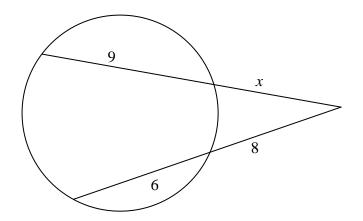
Start a new sheet of writing paper.

Marks

a) Find the coordinates of the point, P, that divides the interval AB externally in the ratio of 1: 4 if A (3, 1) and B (-1, -5).

3

- Using the substitution, $u = x^4 + 1$, or otherwise, evaluate $\int_0^1 x^3 e^{x^4 + 1} dx$.
- Find the constant term in the expansion of $(x^2 \frac{1}{2x^3})^{10}$
- d) Find the general solution to $2\cos\theta + \sqrt{3} = 0$. Express your answer in terms of π .
- e) Find x, giving reasons: 2



Question 3 (12 marks) Start a new sheet of writing paper. i) 1 a) Show that $x^3 + 2x - 17 = 0$ has a root between x = 2 and x = 33 ii) Using an approximation of x = 2.4, use one application of Newton's method to find a better approximation for this root. Give your answer to two decimal places. Express $\sin x - 2\cos x$ in the form $A\sin(x-\alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$. 2 b) i)

ii) Hence, or otherwise, solve
$$\sin x - 2\cos x = \frac{\sqrt{5}}{2}$$
 for $0 \le x \le 2\pi$.

Give your answer(s) correct to 2 decimal places.

A particle moves on the x axis with velocity v m/s. The particle is 4 c) initially at rest at x=1 m. Its acceleration is given by $\ddot{x} = 2v$ m/s². Find the velocity and acceleration of the particle at x = 10 metres.

End of Question 3

Marks

- a) Given $y = 2\sin^{-1}\frac{x}{3}$
 - i) State the domain and range of this function.

2

ii) Sketch the curve $y = 2 \sin^{-1} \frac{x}{3}$.

2

b) Find the exact value of $\int_{0}^{2\sqrt{3}} \frac{1}{4+x^2} dx$

2

c) Prove that $\frac{2}{\tan A + \cot A} = \sin 2A$

2

d) i) For the binomial expansion of $(4+3x)^{15}$, show that:

2

2

$$\frac{T_{k+1}}{T_k} = \frac{16-k}{k} \times \frac{3}{4} \times x .$$

ii) Hence, find the greatest coefficient of $(4+3x)^{15}$, leaving your answer in index form.

Question 5 (12 marks)

Start a new sheet of writing paper.

Marks

- a) The velocity $v \, m/s$ of a particle moving along the x-axis is given by $v^2 = 16x 4x^2 + 20$.
 - i) Prove that the motion is simple harmonic.

2

ii) Find the centre of motion.

1

iii) Find the distance travelled in one complete oscillation.

- 1
- b) i) Show that the equation of the normal at $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ is $x + py ap^3 2ap = 0$

2

- ii) The normals from $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ on the parabola $x^2 = 4ay$ meet at right angles. Prove that the locus of the points of intersection of these normals is the parabola $x^2 = ay 3a^2$
- 3
- Prove by mathematical induction that $\frac{1}{2!} + \frac{2}{3!} + ... + \frac{n}{(n+1)!} = \frac{(n+1)! 1}{(n+1)!}$ for all positive integers n.

Question 6 (12 marks)

Start a new sheet of writing paper.

Marks

1

a) Newton's law of cooling states that a body cools according to the equation $\frac{dT}{dt} = -k(T-S)$,

where T is the temperature of the body at time t, S is the temperature of the surroundings and k is a constant.

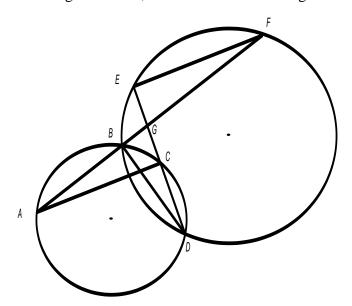
- Show that $T = S + Ae^{-kt}$ satisfies the equation, where A is a constant.
- ii) A metal rod has an initial temperature of $350^{\circ}C$ and cools to $100^{\circ}C$ in 10 minutes. The surrounding temperature is $24^{\circ}C$.
 - (α) Find the value of A and show that $k = \frac{-1}{10} \log_e \left(\frac{38}{163} \right)$
 - (β) Find how long it will take from the rod to cool to 25°C.

Question 6 continues on the next page

Question 6 Continued

Marks

b) In the diagram below, ABF and DCE are straight lines.



- i) Copy the diagram into your answer booklet.
- ii) Prove that AC is parallel to EF.

3

c) Given that
$$f(x) = \frac{(5-x)(1+x)}{5}$$
 and $h(x) = \log_e \{f(x)\}$

i) Find the largest domain of y = h(x).

1

ii) Find the equation of the inverse function $y = h^{-1}(x)$.

2

iii) Find the domain of the inverse function $y = h^{-1}(x)$.

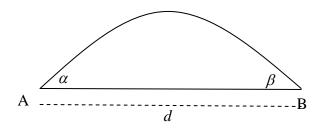
1

Question 7 (12 marks)

Start a new sheet of writing paper.

Marks

- a) The polynomial $P(x) = x^3 2x^2 + ax + b$ has (x+2) and (x-2) as factors, find the
 - i) values of a and b.
 - ii) remaining root of $P(x) = x^3 2x^2 + ax + b$
- b) A missile is launched from point A at an angle α and at a speed V towards a target at B, d metres away. Simultaneously a second missile is launched at speed W from B at an angle β , to intercept the first. The angles α and β are measured as in the diagram and are related by $\beta = 90^{\circ} \alpha$.



The horizontal and vertical displacements of the projectiles from *A* and *B* are given by the following equations (DO NOT PROVE THESE RESULTS):

Missile from A: Missile from B

$$x = Vt \cos \alpha$$
 $x = d - Wt \cos \beta$
 $y = -\frac{1}{2}gt^2 + Vt \sin \alpha$ $y = -\frac{1}{2}gt^2 + Wt \sin \beta$

- i) By equating y-components, show that if the missiles are to intersect, then the second missile must have speed $W = V \tan \alpha$.
- ii) Show that the time of intersection is $t = \frac{d \cos \alpha}{V}$ seconds after launch. 2

Question 7 continues on the next page

Question 7 Continued

Marks

Consider the function
$$f(x) = \frac{\log_e x}{x}$$

- i) Find the coordinates of the stationary point on the curve y = f(x) and determine its nature.
- ii) Hence show that $\pi^e < e^{\pi}$

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \cot x, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Blank Page

Academic Year	4112	Calendar Year	2010
Course	Ex+. 1.	Name of task/exam	Ext. 1 TRIAL EXAM

Question 1:

a)
$$\lim_{x\to 0} \frac{3x}{\tan 2x} = \lim_{x\to 0} \frac{3x}{\tan 2x}$$

$$= \lim_{x\to 0} \frac{3x}{2} \frac{2x}{\tan 2x}$$

$$= \lim_{x\to 0} \frac{3}{2} \left(\frac{2x}{\tan 2x}\right)$$

$$= \frac{3}{2} \left(1\right)$$

$$= \frac{3}{2} \left(1\right)$$

b)
$$\int_{0}^{\frac{\pi}{8}} \sin^{2} 4x \, dx$$

We know $\cos 8x = 1 - 2\sin^2 4x$ $5\sin^2 4x = \frac{1}{2} - \frac{1}{2}\cos 8x$

$$\int_{0}^{\frac{11}{8}} \left(\frac{1}{2} - \frac{1}{2} \cos 8x \right) dx$$

$$= \left(\frac{1}{16} \left(\frac{8}{10}\right) - \frac{16}{16} \sin \frac{8}{10}\right) - \left(0 - \frac{1}{10}\right)$$

c)
$$\frac{4x-3}{x} \geq 5$$

$$\chi^{2}\left(\frac{4\chi-3}{\varkappa}\right) > 5\chi^{2}$$

$$x(4x-3)-5x^{2} \ge 0$$

$$x(4x-3)-5x^{2} \ge 0$$

$$x(4x-3)-5x^{2} \ge 0$$

$$x(-3-x) \ge 0$$

$$x(x+3) \le 0$$

$$x(x+3) \le 0$$

d)
$$y = -x - 1$$
 $4x + 5y = 2$
 $m = -1$ $m = -\frac{4}{5}$
 $tan e = \left| \frac{m_1 - m_2}{1 + m_1, m_2} \right|$
 $= \left| \frac{-1 - \frac{4}{5}}{1 + \left(-1 \right) - \frac{4}{5}} \right|$

$$= \left| \frac{-\frac{1}{5}}{\frac{q}{5}} \right|$$

$$tano = \frac{1}{9}$$

$$\cos \theta = \frac{1-t^2}{1+t^2}$$

$$\frac{1-\tan^2 15}{1+\tan^2 15} = \cos 30^{\circ}$$

$$\frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} = \frac{\sqrt{3}}{2}$$

Page | of |C

Academic Year	40 12	Calendar Year	२०।०
Course	Ex+.1.	Name of task/exam	TRIAL EXAM

Question 2:
a)
$$A(3,1)$$
 $B(-1,-5)$ $-1:4$

$$x = \frac{m \times 2 + n \times 1}{m+n}, \quad y = \frac{my_2 + ny_1}{m+n}$$

$$x = \frac{(-1)(-1) + 4(3)}{3}, \quad y = \frac{(-1)(-5) + 4(1)}{3}$$

$$x = \frac{1+12}{3}, \quad y = \frac{5+4}{3}$$

$$x = \frac{m x_2 + n x}{m + n}, \quad y = \frac{m y_2 + n}{m + n}$$

$$x = \frac{(-1)(-1) + 4(3)}{3}, \quad y = \frac{(-1)(-5) + 4}{3}$$

$$x = \frac{1 + 12}{3}, \quad y = \frac{5 + 4}{3}$$

$$x = \frac{13}{3}, \quad y = 3$$

$$\therefore \rho(\frac{13}{3}, 3)$$

b)
$$\int_{0}^{1} x^{3} e^{x^{4}+1} dx$$

$$\int_{0}^{1} \frac{4}{4} x^{3} e^{x^{4}+1} dx$$

$$= \int_{0}^{1} \frac{4}{4} e^{x^{3}} dx$$

c)
$$\left(\chi^{2} - \frac{1}{2\chi^{3}}\right)^{10}$$

 $T_{k+1} = {}^{10}C_{k}\left(\chi^{2}\right)^{10-k}\left(-\frac{1}{2\chi^{3}}\right)^{k}$

d)
$$2 \cos \theta + 13 = 0$$

$$\cos \theta = -\frac{13}{2}$$

$$\theta = (2k+1)\pi \pm \frac{\pi}{6}, \quad \text{ke integer}$$

$$9x + x^{2} = 112$$

$$x^{2} + 9x - 112 = 0$$

$$(x - 7)(x + 16) = 0$$

$$x = 7, -16$$

$$but x > 0 as length
$$\therefore x = 7$$$$

Page 2 of 10

Academic Year	4-12	Calendar Year	2010
Course	Ex+. 1.	Name of task/exam	TRIAL EXAM

Question 3:

a) i)
$$P(x) = 3x^{3} + 2x - 17$$

 $P(2) = -5$
 $P(3) = 16$

Since P(2) < 0 and P(3) > 0and P(x) is continuous, there exists a root between X=2 and X=3.

(ii)
$$P(2.4) = 1.624$$

 $P'(x) = 3x^2 + 2$
 $P'(2.4) = 19.28$
 $\therefore Z_2 = Z_1 - \frac{P(Z_1)}{P'(Z_1)}$
 $= 2.4 - \frac{1.624}{19.28}$
 $= 2.315...$
A better root is $x = 2.32$

b)
$$\sin x - 2\cos x \equiv A\sin(x-x)$$

 $\sin x - 2\cos x \equiv A\sin x \cos x - A\cos x \sin x$

(2 dp)

$$1 = A \cos 2$$

$$2 = A \sin 2$$

$$1 + 4 = A^{2} \left(\frac{2}{\cos 2} + \sin^{2} \alpha \right) \left(\frac{1}{2} + \frac{1}{2} \right)^{2}$$

$$5 = A^{2}$$

$$A = \sqrt{5}$$

$$A > 0$$

ii)
$$\sin x - 2\cos x = \sqrt{\frac{5}{2}}$$

$$\therefore \sqrt{5} \sin (x - 1.107) = \sqrt{\frac{5}{2}}$$

$$\sin (x - 1.107) = \frac{1}{2}$$

$$x - 1.107 = \frac{11}{6}, \frac{5\pi}{6}$$

$$\therefore x = 1.63, 3.73 \quad (24p)$$

c)
$$t=0$$
 $v=0$ $x=1m$.
 $\dot{x} = 2v$
 $v \frac{dv}{dx} = 2v$
 $\frac{d^2v}{dx} = \frac{1}{2} \frac{1}{2} \frac{dv}{dx}$
 $x = \int \frac{1}{2} \frac{dv}{dx} + c$
 $1 = 0 + c$
 $x = \frac{1}{2}v + 1$
 $x = \frac{1}{2}v + 1$
 $x = \frac{1}{2}v + 1$
 $y = \frac{1}{2}v$

$$V = 18 \text{ m/s}$$

 $\ddot{x} = 36 \text{ m/s}^2$ Page 3 of 10

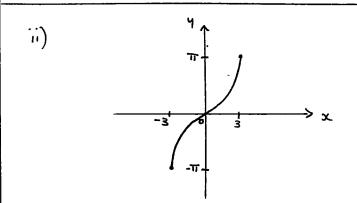
Academic Year	Yr 12	Calendar Year	2010	
Course	Ext. 1.	Name of task/exam	TRIAL	EXAM

Question 4:

a)
$$y = 2 \sin^{-1} \frac{x}{3}$$

i) Domain:
$$-1 \leqslant \frac{x}{3} \leqslant 1$$

 $\therefore -3 \leqslant x \leqslant 3$



b)
$$\int_{0}^{2\sqrt{3}} \frac{1}{4 + x^{2}} dx$$

$$= \frac{1}{2} \left[+ a_{n}^{-1} \frac{x}{2} \right]_{0}^{2\sqrt{3}}$$

$$= \frac{1}{2} \left[+ a_{n}^{-1} \frac{2\sqrt{3}}{2} - + a_{n}^{-1} \frac{0}{2} \right]$$

$$= \frac{1}{2} \left[+ a_{n}^{-1} \sqrt{3} \right]$$

$$= \frac{1}{2} \cdot \frac{\pi}{3}$$

$$= \frac{\pi}{6}$$

e) Prove
$$\frac{2}{\tan A + \cot A} = \sin 2A$$

$$LHS = \frac{2}{\frac{S_{In}A}{\cos A} + \frac{\cos A}{\sin A}}$$

$$= \frac{2}{\frac{S_{In}^2 A + \cos^2 A}{\cos A \sin A}}$$

$$= \frac{2}{\cos A \sin A}$$

$$= 2\cos A \sin A$$

$$= \sin 2A$$

$$= \cos A \sin A$$

$$= \sin 2A$$

$$= \sin 2A$$

$$= \cos A \sin A$$

$$= \sin 2A$$

$$= \sin 2A$$

$$= \cos A \sin A$$

$$= \cos A \cos A$$

$$= \cos A \sin A$$

$$= \cos A \cos A$$

$$= \cos A \cos$$

$$\frac{d}{d} = \frac{15}{1} \left(\frac{15-k}{4} \right)^{15-k} \left(\frac{3x}{4} \right)^{k}$$

$$\frac{d}{d} = \frac{15}{1} \left(\frac{15-k}{4} \right)^{15-k} \left(\frac{3x}{4} \right)^{k}$$

$$\frac{d}{d} = \frac{15}{1} \left(\frac{4}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{k-1}$$

$$\frac{d}{d} = \frac{15}{15} \left(\frac{4}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15}{15} \left(\frac{4}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{4}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k} \right)^{15-k} \left(\frac{3x}{15-k} \right)^{15-k}$$

$$\frac{d}{d} = \frac{15-k}{15-k} \left(\frac{3x}{15-k}$$

Page 4 of 10

Academic Year	Yr 12	Calendar Year	2010
Course	Ex+. 1.	Name of task/exam	TRIAL EXAM

ii) for greatest coefficient

$$\frac{T_{LH_1}}{T_L} > 1$$
 $\frac{16-k}{k} \times \frac{3}{4} > 1$
 $48-3k > 4k$ (as $k > 0$)

 $48 > 7k$
 $k < \frac{48}{7}$
 $k < \frac{48}{7}$
 $k = 6, 5, ...$
 $k = 6$ is greatest

 $T_7 = {}^{15}C_6 (4)^{15-6}(3)^6$
 $= 5005 \times 4^9 \times 3^6$

Question 5:

a)
$$V^{2} = 16 \times -4 \times^{2} + 20$$

i) $\frac{1}{2}V^{2} = 8 \times -2 \times^{2} + 10$
 $\frac{d}{dx}(\frac{1}{2}V^{2}) = \frac{d}{dx}(8x - 2x^{2} + 10)$
 $x = 8 - 4x$
 $x = -4(x - 2)$
which is of the form
 $x = -n^{2}(x - h)$ which is
sometiments at $x = h$
i.e. $x = 2$.

= 5005 × 218 x 36

iii) when
$$V = 0$$

$$0 = 16x - 4x^{2} + 20$$

$$4x^{2} - 16x - 20 = 0$$

$$x^{2} - 4x - 5 = 0$$

$$(x+1)(x-5) = 0$$
oscillates between $-1 & 5$

$$\therefore d'stance travelled is 12 m.$$

b) i)
$$x^2 = 4ay$$
 $y = \frac{x^2}{4a}$
 $\frac{dy}{dx} = \frac{2x}{4a}$
 $at x = 2ap$
 $m_{tany} = \frac{4ap}{4a}$
 $= p$
 $m_{tany} = -\frac{1}{p}$
 m_{t

ii) If normals neet at right angles then
$$-\frac{1}{p} \times -\frac{1}{q} = -1$$
Page 5 of 10

Academic Year	Yr 12	Calendar Year	2010	
Course	Ex4.1.	Name of task/exam	TRIAL	EXAM

eqn of normals $x + py - ap^3 - 2ap = 0$ $x + qy - aq^3 - 2aq = 0$ $y(p-q) - aq^3 + aq^3 - 2ap + 2aq = 0$ $y(p-q) - a(p^3 - q^3) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p+pq+q^2) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p+pq+q^2) - 2a = 0$ $y = a(p^2 + pq+q^2) + 2a$ $x = -py + ap^3 + 2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p^2 + pq+q^2) + 2a + ap+2ap$ $y = a(p+q) + ap+2ap$	
$y(p-q) - ap^{3} + aq^{3} - 2ap + 2aq = 0$ $y(p-q) - a(p^{3} - q^{3}) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p^{2} + pq + q^{2}) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p^{2} + pq + q^{2}) - 2a(p-q) = 0$ $y - a(p^{2} + pq + q^{2}) - 2a = 0$ $y = a(p^{2} + pq + q^{2}) + 2a$ $x = -py + ap^{3} + 2ap$ $= -p[a(p^{2} + pq + q^{2}) + 2a] + ap + 2ap$ $= -ap^{3} - p^{2}qa - ap^{2}q - 2ap + ap^{2} + 2ap$ $= -ap^{3} - p^{2}qa - ap^{2}q - 2ap + ap^{2} + 2ap$ $x = -apq(p+q)$ $p + intersection of Normals: (-apq(p+q)), a(p^{2} + pq + q^{2} + 2) x = -apq(p+q), y = ap^{2} + pq + q^{2} + 2 x = -a(-1)(p+q) x = a(p+q)$	egn of normals
$y(p-q) - ap^{3} + aq^{3} - 2ap + 2aq = 0$ $y(p-q) - a(p^{3} - q^{3}) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p^{2} + pq + q^{2}) - 2a(p-q) = 0$ $y(p-q) - a(p-q)(p^{2} + pq + q^{2}) - 2a(p-q) = 0$ $y - a(p^{2} + pq + q^{2}) - 2a = 0$ $y = a(p^{2} + pq + q^{2}) + 2a$ $x = -py + ap^{3} + 2ap$ $= -p[a(p^{2} + pq + q^{2}) + 2a] + ap + 2ap$ $= -ap^{3} - p^{2}qa - ap^{2}q - 2ap + ap^{2} + 2ap$ $= -ap^{3} - p^{2}qa - ap^{2}q - 2ap + ap^{2} + 2ap$ $x = -apq(p+q)$ $p + intersection of Normals: (-apq(p+q)), a(p^{2} + pq + q^{2} + 2) x = -apq(p+q), y = ap^{2} + pq + q^{2} + 2 x = -a(-1)(p+q) x = a(p+q)$	$x + py - ap^{5} - 2ap = 0$ (1)
$y(p-q)-a(p^{3}-q^{3})-2a(p-q)=0$ $y(p-q)-a(p-q)(p^{2}+pq+q^{2})-2a(p-q)=0$ Since $p \neq q$ can divide by $(p-q)$ $y-a(p^{2}+pq+q^{2})-2a=0$ $y=a(p^{2}+pq+q^{2})+2a$ $x=-py+ap^{3}+2ap$ $=-p[a(p^{2}+pq+q^{2})+2a]+ap^{2}+2ap$ $=-ap^{3}-p^{2}qa-ap^{2}-2ap+ap^{2}+2ap$ $=-apq(p+q)$ $\therefore p+ intersection of Normals: (-apq(p+q)), a(p^{2}+pq+q^{2}+2) $ Locus: we know $pq=-1$ and $x=-apq(p+q)$ $y=a(p+q)$ $x=a(p+q)$	1 + 4y - 24y - 24y - 0
$y(p-q) - a(p-q)(p^{2}+pq+q^{2}) - 2a(p-q) = 0$ Since $p \neq q$ can divide by $(p-q)$ $y - a(p^{2}+pq+q^{2}) - 2a = 0$ $y = a(p^{2}+pq+q^{2}) + 2a$ $x = -py + ap^{3} + 2ap$ $= -p[a(p^{2}+pq+q^{2}) + 2a] + ap^{2} + 2ap$ $= -ap^{3} - p^{2}qa - apq - 2ap + ap^{2} + 2ap$ $x = -apq(p+q)$ $x = -a(-i)(p+q)$ $x = a(p+q)$	y (p-q) - ap3+aq3-2ap+2aq=0
Since $p \neq q$ can divide by $(p-q)$ $y - a(p^2 + pq + q^2) - 2a = 0$ $y = a(p^2 + pq + q^2) + 2a$ $x = -py + ap^3 + 2ap$ $= -p[a(p^2 + pq + q^2) + 2a] + ap^3 + 2ap$ $= -ap^3 - p^2qa - apq^2 - 2ap + ap^3 + 2ap$ $x = -apq(p+q)$ $y = apq + apq +$	$y(\rho-q)-a(\rho^{3}-q^{3})-2a(\rho-q)=0$
Since $p \neq q$ can divide by $(p-q)$ $y - a(p^2 + pq + q^2) - 2a = 0$ $y = a(p^2 + pq + q^2) + 2a$ $x = -py + ap^3 + 2ap$ $= -p[a(p^2 + pq + q^2) + 2a] + ap^3 + 2ap$ $= -ap^3 - p^2qa - apq^2 - 2ap + ap^3 + 2ap$ $x = -apq(p+q)$ $y = apq(p+q)$ $y = apq(p+q)$ $y = apq(p+q)$ $y = apq(p+q)$	y (p-q) - a (p-q) (p+pq+q2) - 2a(p-q)=0
$y - a(p^{2} + pq + q^{2}) - 2a = 0$ $y = a(p^{2} + pq + q^{2}) + 2a$ $x = -py + ap^{3} + 2ap$ $= -p[a(p^{2} + pq + q^{2}) + 2a] + ap + 2ap$ $= -ap^{3} - p^{2}qa - apq - 2ap + ap + 2ap$ $= -apq(p + q)$ $\therefore pt intersection of Normals:$ $(-apq(p+q)), a(p^{2} + pq + q^{2} + 2)$ $Locus:$ we know $pq = -1$ and $x = -apq(p+q)$ $x = -a(-1)(p+q)$ $x = a(p+q)$	Since p = q can divide by (p-q)
$y = a(p^{2} + pq + q^{2}) + 2a$ $x = -py + ap^{3} + 2ap$ $= -p\left[a(p^{2} + pq + q^{2}) + 2a\right] + ap^{2} + 2ap$ $= -ap^{3} - p^{2}qa - apq^{2} - 2ap + ap^{2} + 2ap$ $x = -apq(p + q)$ $x = -apq(p + q)$ $x = -apq(p + q), a(p^{2} + pq + q^{2} + 2)$ $x = -apq(p + q), a(p^{2} + pq + q^{2} + 2)$ $x = -apq(p + q), y = ap^{2} + pq + q^{2} + 2$ $x = -a(-i)(p + q)$ $x = a(p + q)$	$y - a(p^2 + pq + q^2) - 2a = 0$
$= -\rho \left[\alpha \left(\rho^{2} + \rho q + q^{2} \right) + 2\alpha \right] + \alpha p + 2\alpha p$ $= -\alpha p^{3} - p^{2} q \alpha - \alpha p q - 2\alpha p + \alpha p + 2\alpha p$ $X = -\alpha p q \left(p + q \right)$ $\therefore p + \text{ intersection of Normals:}$ $\left(-\alpha p q \left(p + q \right) \right) \alpha \left(p^{2} + p q + q^{2} + 2 \right)$ Locus: $\text{we know } p q = -1 \text{and}$ $X = -\alpha p q \left(p + q \right) y = \alpha p + p q + q^{2} + 2$ $X = -\alpha \left(-1 \right) \left(p + q \right)$ $X = \alpha \left(p + q \right)$ $X = \alpha \left(p + q \right)$	$y = a(p^2 + pq + q^2) + 2a$
$= -\alpha p^{3} - p^{2}q \alpha - \alpha pq - 2\alpha p + \alpha p + 2\alpha$ $X = -\alpha pq \left(p + q \right)$ $\therefore pt \text{intersection of Normals:}$ $\left(-\alpha pq \left(p + q \right) \right), \alpha \left(p^{2} + pq + q^{2} + 2 \right)$ Locus: $\text{we know } pq = -1 \text{and}$ $X = -\alpha pq \left(p + q \right) y = \alpha p^{2} + pq + q^{2} + 2$ $X = -\alpha \left(-1 \right) \left(p + q \right)$ $X = \alpha \left(p + q \right)$	$x = -py + ap^3 + 2ap$
It = $-apq(p+q)$.: $p+$ intersection of Normals: $\left(-apq(p+q), a(p^2+pq+q^2+2)\right)$ Locus: we know $pq = -1$ and $x = -apq(p+q)$ $y = ap^2+pq+q^2+2$ x = -a(-i)(p+q) x = a(p+q)	
It = $-apq(p+q)$.: $p+$ intersection of Normals: $\left(-apq(p+q), a(p^2+pq+q^2+2)\right)$ Locus: we know $pq = -1$ and $x = -apq(p+q)$ $y = ap^2+pq+q^2+2$ x = -a(-i)(p+q) x = a(p+q)	= -ap3 - p2 q a - apq - 2ap +ap+2
	x = -apg (p+q)
Locus: we know $pq = -1$ and $x = -apq(p+q)$ $y = ap^2 + pq + q^2 + 2$ x = -a(-1)(p+q) x = a(p+q)	pt intersection of Normals:
Locus: we know $pq = -1$ and $x = -apq(p+q)$ $y = ap^2 + pq + q^2 + 2$ x = -a(-1)(p+q) x = a(p+q)	$\left(-\alpha\rho\gamma(\rho+\gamma), \alpha(\rho^2+\rho\gamma+\gamma^2+2)\right)$
$X = -\alpha \rho q \left(\rho + q \right) \qquad y = \alpha \left(\rho + \rho q + q^2 + 2 \right)$ $X = -\alpha \left(-1 \right) \left(\rho + q \right)$ $X = \alpha \left(\rho + q \right)$	
$X = -\alpha(-1)(p+q)$ $X = \alpha(p+q)$	·
$X = -\alpha(-1)(p+q)$ $X = \alpha(p+q)$	$x = -apq \left(p+q\right) \qquad y = ap + pq + q + 2$
	$X = -\alpha(-1)(\rho + q)$
$\frac{x}{a} = p + q$	x = a (p+q)
	$\frac{x}{a} = P + q$

$$y = a (p^{2} + pq + q^{2}) + 2a$$

$$\frac{y-2a}{a} = p^{2} + (-1) + q^{2}$$

$$\frac{y-2a}{a} + 1 = p^{2} + q^{2}$$

$$\frac{y-2a+a}{a} = (p+q)^{2} - 2pq$$

$$\frac{y-a}{a} = (\frac{x}{a})^{2} - 2(-1)$$

$$\frac{y-a}{a} = \frac{x^{2}}{a^{2}} + 2$$

$$a(y-a) = x^{2} + 2a^{2}$$

$$x^{2} = ay - a^{2} - 2a^{2}$$

$$x^{2} = ay - 3a^{2}$$
c) Prove

R
$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+i)!} = \frac{(n+i)!-1}{(n+i)!}$$

for all positive integers n .

Step 1: prove true for $n=1$

LHS = $\frac{1}{2!}$

RHS = $\frac{(1+i)!-1}{(1+i)!}$

= $\frac{1}{2!}$

= $\frac{2!-1}{2!}$

: LHS = RHS

= $\frac{1}{2}$

Page 6 of 10

Academic Year	Yr 12	Calendar Year	2010
Course	Ex+. 1.	Name of task/exam	TRIAL EXAM

Question 6:

Step 2: Assume true for
$$n=k$$

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k}{k} = \frac{(k+1)!-1}{(k+1)!}$$

Step 3: Prove true for $n=k+1$

i.e. prove,
$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k+1}{(k+2)!} = \frac{(k+2)!-1}{(k+2)!}$$

LHS = $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{(k+2)!}$

$$= \frac{(k+1)!-1}{(k+1)!} + \frac{k+1}{(k+2)!}$$

$$= \frac{(k+2)!}{(k+2)!}$$

$$= \frac{(k+2)!-(k+2)+k+1}{(k+2)!}$$

$$= \frac{(k+2)!-(k+2)+k+1}{(k+2)!}$$

$$= \frac{(k+2)!-1}{(k+2)!}$$

a)
$$\frac{dT}{dt} = -k(T-S)$$

i) $T = S + Ae^{-kt}$
 $T - S = Ae^{-kt}$
 $T - S = Ae^{-kt}$

olso

 $\frac{dT}{dt} = Ae^{-kt} (-k)$
 $= (T-S)(-k)$ from (1)

 $\frac{dT}{dt} = -k(T-S)$

ii) $t = 0$ $T = 350°C$
 $t = 10 mis$ $T = 100°C$
 $S = 24°C$

(4) $T = 24 + Ae^{-kt}$
 $350 = 24 + Ae^{0}$
 $A = 326$
 $T = 24 + 326e^{-kt}$
 $100 =$

Academic Year	4/12	Calendar Year	2010	
Course	Ex+. 1.	Name of task/exam	TRIAL	EXAM

(f)
$$T = 24 + 326e^{-kt}$$

 $25 = 24 + 326e^{-kt}$
 $\frac{1}{326} = e^{-kt}$
 $\ln(\frac{1}{326}) = -kt$
 $t = -\frac{1}{12} \ln(\frac{1}{326})$
 $t = 39.7 \text{ mins}$

Same are BE equal)

.: < BAC = < EFG and they are alternate angles.
.: AC | I EF

c)
$$f(x) = \frac{(5-x)(1+x)}{5}$$

 $h(x) = \ln \{f(x)\}$
i) $D: f(x) > 0$
 $\frac{(5-x)(1+x)}{5} > 0$
 $\frac{(5-x)(1+x)}{5} > 0$

ii)
$$f: y = \ln \left[\frac{(5-x)(1+x)}{5} \right]$$
 $f^{-1}: x = \ln \left[\frac{(5-y)(1+y)}{5} \right]$
 $e^{x} = \frac{(5-y)(1+y)}{5}$
 $5e^{x} = \frac{(5-y)(1+y)}{5}$
 $5e^{x} = \frac{5+4y-y^{2}}{-5e^{x}}$
 $-5e^{x} = \frac{y^{2}-4y-5}{-4y-4}$
 $9-5e^{x} = \frac{(y-2)^{2}}{y-2}$
 $y-2 = \frac{1}{2}\sqrt{9-5e^{x}}$

for function, either of these both not both. Page 8 of 10

DOIGHTOILD TOX CHARACTE			
Academic Year	Yr 12	Calendar Year	2010
Course	Ext. 1	Name of task/exam	TRIAL EXAM

iii) Domain:
$$9-5e^{x} \ge 0$$

$$5e^{x} < 9$$

$$e^{x} < \frac{9}{5}$$

$$x \ln_{1}e < \ln_{5}$$

$$x \le \ln_{5}$$

a) i)
$$P(x) = x^3 - 2x^2 + ax + b$$

 $P(-2) = 0$ and $P(2) = 0$

$$-8-8-2a+b=0$$

$$-2a+b = 16$$
 ①
$$2a+b = 0$$
 ②
$$2b = 16$$
 ① + ②
$$b = 8$$

$$a = -4$$

(i)
$$P(x) = x^{3} - 2x^{2} - 4x + 8$$

$$= (x + 2)(x - 2)(x - 4)$$

$$x^{2} - 4) x^{3} - 2x^{2} - 4x + 8$$

$$\frac{x^{3} - 4x}{-2x^{2} + 8}$$

$$\frac{-2x^{2} + 8}{-2x^{2} + 8}$$

.. other root is x=2.

(b) i)
$$y = -\frac{1}{2}gt^2 + Vt \sin \alpha$$
 (1)

$$y = -\frac{1}{2}gt^2 + Vt \sin \beta$$

$$y = -\frac{1}{2}gt^2 + Vt \sin \alpha$$

$$y = -\frac{1}{2}gt^2 + Vt \sin \beta$$

$$v = V \sin \alpha = Vt \sin \beta$$

$$v = V \sin \alpha = V \sin \beta$$

$$v = V \cos \alpha$$

$$v = V \cos \alpha$$

$$v = V \cot \alpha$$

Vt cos
$$\alpha = d - Wt$$
 cos β

Vt cos $\alpha + Wt$ cos $\beta = d$

t (V cos $\alpha + Wt$ cos β) = d

t = $\frac{d}{(V\cos\alpha + V\tan\alpha\cos\beta)}$

= $\frac{d}{(V\cos\alpha + V\tan\alpha\cos\beta)}$

= $\frac{d}{(V\cos\alpha + V\tan\alpha\cos(40-\alpha))}$

t = $\frac{d}{(V\cos\alpha + V\sin\alpha\cos\alpha)}$

Page 9 of 10

Academic Year	4012	Calendar Year	2010
Course	Ext. 1.	Name of task/exam	Trial Exam

Course

| Ext. 1. |

$$t = \frac{d \cos \alpha}{v(\cos^2 \alpha + \sin^2 \alpha)}$$

$$t = \frac{d \cos \alpha}{v}$$
| C)
$$f(x) = \frac{\ln x}{x}$$
| i)
$$f'(x) = \frac{x(\frac{1}{x}) - \ln x(1)}{x^2}$$
| = \frac{1 - \ln x}{x^2} = 0

| \frac{1 - \ln x}{x} = 0

| \frac{1 - \ln x}{x} = 0

| \frac{1 - \ln x}{x} =

$$f''(x) = -\frac{3x + 2x \ln x}{x^4}$$
when $x = e$

$$f''(x) = -\frac{3e + 2e \ln e}{e^4}$$

$$= -\frac{3e + 2e}{e^4}$$

$$= -\frac{1}{e^3}$$
<0
...max at $(e, \frac{1}{e})$.

ii) Since max value is
$$\frac{1}{e}$$

then $\frac{\ln x}{x} < \frac{1}{e}$

at $x = \pi$
 $\frac{\ln \pi}{x} < \frac{1}{e}$
 $e \ln \pi^{e} < \pi$

take e of both sides

 $e \ln \pi^{e} < e^{\pi}$
 $e \ln \pi^{e} < e^{\pi}$

Page 10 of 10