EPPING BOYS' HIGH SCHOOL

YEAR 12 MATHEMATICS (2U) TRIAL HSC EXAMINATION 2008

Time allowed: 3 hours (Plus 5 minutes reading time)

Student Number:		
Class: <u>12M</u>	Teacher:	

DIRECTIONS TO CANDIDATES:

- ♦ There are 10 questions.
- ♦ **ALL** questions must be attempted.
- ♦ **ALL** questions are of equal value.
- ♦ Write using black or blue pen.
- All necessary working should be shown in every question.
- Full marks may not be given unless you show working.
- Full marks may not be awarded for careless or badly arranged work.
- ♦ Start each question in a new booklet.
- ♦ Approved calculators may be used.
- ♦ **Do not** use white out on your answer paper.
- Cross out neatly leaving deleted work able to read.
- Fill in the information at the top of this page.
- ♦ Borrowing is not allowed.
- A table of standard integrals is provided at the back of this paper.

2	3	4	5	6	7	8	9	10	Total	%
12	12	12	12	12	12	12	12	12	/120	100
	12	2 3	2 3 4	2 3 4 5	2 3 4 5 6	2 3 4 5 6 7				

Total Marks – 120 Attempt Questions 1 – 10 All questions are of equal value

Marks

Begin each question on a SEPARATE sheet of paper. Extra paper is available.

Question 1 (12 marks) Use a SEPARATE sheet of paper or booklet.

- a) Evaluate $e^{2.4} 1$ correct to 3 significant figures.
- b) Solve $|2x-4| \le 2$
- c) If $\frac{4}{2-\sqrt{3}} = a + b\sqrt{3}$ find the values of a and b.
- d) Find the sum of the first ten terms of the series $4\frac{1}{2} + 3 + 1\frac{1}{2} + \dots$
- e) Factorise $2z^2 + 6zy + xz + 3xy$
- f) Find the perpendicular distance from the point (1, 3) to the line 6x-8y+5=0

Question 2 (12 marks) Use a SEPARATE writing booklet.

Marks

a) Differentiate with respect to x

(i)
$$2x^3 + x^{-3}$$

(ii)
$$\frac{1}{e^{2x}} - \sin x$$

b) (i) Find
$$\int \sec^2 x - e^{4x} dx$$

(ii) Evaluate
$$\int_{1}^{e} x^2 + \frac{2}{x} dx$$
 3

c) Find the area enclosed by the curve $y = \cos x$, the line $x = \frac{\pi}{3}$ and the x and y axes.

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

a)

The points A and C have coordinates (1, 6) and (5, 0) respectively. The line BD has an equation of 2x-3y+3=0 and meets the y axis in D.

i) The point M is the midpoint of AC. Show that M has coordinates 1 (3, 3).ii) Show that M lies on BD. 1 iii) Find the gradient of the line AC. 1 Show that BD is perpendicular to AC. iv) 2 Find the distance AC. v) 1 Explain why the quadrilateral ABCD is a kite regardless of the vi) 1 position of B.

Question 3 continues on page 5

Question 3 continued Marks (b) i Find the sum of the first 200 positive integers. 1+2+3+4+......200 ii. The series 1+5+7+11+.....+199 is formed by omitting from the first 200 positive integers all those which are multiples of 2 or 3. Find the sum of the series.

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

a) Show that:

2

$$\sqrt{\frac{\csc^2 x - \cot^2 x - \cos^2 x}{\cos^2 x}} = \tan x$$

b) Express 2·12^c (radians) as an angle in degrees correct to the nearest minute

1

c) What is the domain and range for $y = \sqrt{9 - x^2}$

2

- d) Ally and Bella are standing on level ground on opposite sides of a tower which is 142 metres high. Ally is due west and measures the angle of elevation of the top of the tower as 16°. Bella is due east and measures the angle of elevation of the top of the tower as 20°.
 - i) Draw a diagram to illustrate this information.

1

ii) Calculate the distance between Ally and Bella.

2

e) Peta and Quentin are pilots of two light planes which leave Resthaven station at the same time. Peta flies on a bearing of 330° at a speed of 180 km/h and Quentin flies on a bearing of 080° at a speed of 240 km/h. Copy the diagram below onto your answer page and mark the information on the diagram.

i) How far apart are Peta and Quentin after 2 hours?

2

ii) What is the bearing of Quentin from Peta after 2 hours.

2

Question 5 (12 marks) Use a SEPARATE writing booklet.

Marks

3

2

a) In the diagram below AE = ED = AD = DC, $\angle ADC = 90^{\circ}$ and AE || BC. $\angle BAC = 51^{\circ}$

- i) Find the size of $\angle EAB$. Give reasons for your answer.
- ii) Find the size of $\angle ABC$. Give reasons for your answer.
- b) Solve, giving your answer(s) in exact form : $2x^2 5x 4 = 0$.

In the diagram above, find the size of the largest angle. Give your answer correct to the nearest degree.

d) Simplify:
$$\frac{5}{m-2} - \frac{2}{m-3}$$

e) Solve the pair of simultaneous equations

$$3x - y = 10$$
$$x = y + 2$$

Question 6 (12 marks) Use a SEPARATE writing booklet.

Marks

2

- a) For the function $y = x^6 6x^4$
 - i) Find the x coordinates of the points where the curve crosses the axes. 2
 - ii) Find the coordinates of the stationary points and determine their nature.
 - iii) Find the coordinates of the points of inflexion.
 - iv) Sketch the graph of $y = x^6 6x^4$ indicating clearly the intercepts, stationary points and points of inflexion.
- b) For a certain function y = f(x), the sketch of y = f'(x) is shown.

Give the x coordinates of the stationary points on y = f(x) and indicate if they are maxima or minima.

Ques	tion 7 (12 marks) Use a SEPARATE writing booklet.	Marks
a)	For th	the parabola with equation $x^2 = -8y$.	
	i)	Find the coordinates of the focus (S) of the parabola.	1
	ii)	Find the equation of the directrix of the parabola.	1
	iii)	Show that the point A(-8, -8) lies on the parabola.	1
	iv)	Find the equation of the focal chord of the parabola which passes through A.	2
	v)	Find the equation of the tangent to the parabola at A.	2
b)	i)	Show that the curves $y = x^2 - 3x$ and $y = 5x - x^2$ intersect at the points $(0, 0)$ and $(4, 4)$.	2
	ii)	Find the area enclosed between the two curves.	3

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

a)

The shaded region above shows the area bounded by the graph $x^2y = 1$, (x > 0), the y-axis and the lines y = 1 and y = 4.

Find the volume of the solid of revolution formed when the shaded region is rotated about y-axis. Give your answers in exact form.

4

1

b) Use the change of base rule to evaluate $\log_8 4$.

c)

In the diagram above AE is parallel to BF. $\angle ADC = 32^{\circ}$, $\angle BCD = 35^{\circ}$ and $\angle CAE = 67^{\circ}$

i) Show that $\triangle ABC$ is isosceles.

3

ii) Find the size of $\angle BAC$.

1

Question 8 continued

Marks

d) Find an approximation for $\int_{1}^{3} g(x)dx$ by using Simpson's Rule with the values in the table below.

х	1	1.5	2	2.5	3
g(x)	12	8	0	3	5

e) Evaluate $\sum_{n=2}^{5} n^2 - 1$

Question 9 (12 marks) Use a SEPARATE writing booklet.

Marks

a) The diagram shows the region bounded by the curve $y = 2x^2 - 2$ the line y = 6 and the x and y axes.

3

Find the volume of the solid of revolution formed when the region is rotated about the *y* axis.

b) The sector ABC has r = 5cm and the arc length BA = 5cm. Calculate the area of the sector.

(i)

B

С

c) Find the equation of the tangent to $y = 2e^x$ at the point (0, 2).

How much does she contribute altogether?

2

1

- d) Bernice contributes to a superannuation fund. She contributes \$250 at the start of every quarter. The investment pays 8% pa interest,
 compounding quarterly. She continues making contributions for 30 years.
- 1
- (ii) What is the value of her initial \$250 investment at the end of the 30 years?

1

(iii) Find the total value of her superannuation.

3

(iv) How much of her superannuation lump sum is interest?

1

Question 10 (12 marks) Use a SEPARATE writing booklet.

Marks

a) A farmer wishes to build a rectangular enclosure for his sheep.
 Fortunately he can use a sandstone escarpment as one side of his rectangle.

He has sufficient fencing material for 200m of fence.

- (i) If we let one side of the rectangle be *x*, write an expression for the area of the enclosure in terms of *x*.
 - 3

2

- (ii) Find the maximum area enclosure the farmer can build.Be sure to justify that this area is a maximum.
- b) Consider the parabola $2y = x^2 4x$.
 - i) Rewrite it in the form $4a(y-k) = (x-h)^2$
 - ii) Give the coordinates of the focus.
 - iii) Give the equation of the directrix.
- c) (i) Find $\int \cos(4x)dx$
 - (ii) Evaluate $\int_{1}^{e^4} \frac{x}{x^2 + 4} dx$ 2

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_{\kappa} x$, x > 0

EPPING BOYS' HIGH SCHOOL YEAR 12 MATHEMATICS (2U) 2008 TRIAL HSC EXAMINATION SOLUTIONS

Ques	tion 1 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$e^{2.4} - 1 \approx 10.023 \approx 10.0$ (3 sig fig)	2
(b)	$ 2x-4 \le 2$	2
	$-2 \le 2x - 4 \le 2$	
	$2 \le 2x \le 6$	
	$1 \le x \le 3$	
(c)	$\frac{1 \le x \le 3}{\frac{4}{2 - \sqrt{3}}} = a + b\sqrt{3}$	2
	· ·	
	$\frac{4}{2-\sqrt{3}} = \frac{4}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$	
	$=\frac{8+4\sqrt{3}}{4-3}$	
	$a+b\sqrt{3}=8+4\sqrt{3}$	
(1)	a = 8 and $b = 44\frac{1}{2} + 3 + 1\frac{1}{2} + \dots$	
(d)	1 1	2
	Series is arithmetic with $a = 4\frac{1}{2}$ and $d = -1\frac{1}{2}$	
	$S_n = \frac{n}{2}(2a + (n-1)d)$	
	$S_{10} = \frac{10}{2}(9 + (9)(-1\frac{1}{2}))$	
	$= 5(-4\frac{1}{2})$ $= -22\frac{1}{2}$	
	$=-22\frac{1}{2}$	
(e)	$2z^{2} + 6zy + xz + 3xy = 2z(z+3y) + x(z+3y)$	2
	= (2z+x)(z+3y)	
(f)	$d = \left \frac{6(1) - 8(3) + 5}{\sqrt{6^2 + (-8)^2}} \right $	2
	$= \left \frac{-13}{\sqrt{100}} \right $	
	=1.3	

Quest	tion 2 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a) i)	$\frac{d}{dx}(2x^3 + x^{-3}) = 6x^2 - 3x^{-4}$	2
ii)	$\frac{d}{dx}\left(\frac{1}{e^{2x}} - \sin x\right) = \frac{d}{dx}\left(e^{-2x} - \sin x\right)$ $= -2e^{-2x} - \cos x$	2
(b) i)	$\int \sec^2 x - e^{4x} dx = \tan x - \frac{e^{4x}}{4} + c$	2
	$= -2e^{-2x} - \cos x$ $\int \sec^2 x - e^{4x} dx = \tan x - \frac{e^{4x}}{4} + c$ $\int_1^e x^2 + \frac{2}{x} dx = \left[\frac{x^3}{3} + 2\ln x \right]_1^e$ $= \frac{e^3}{3} + 2\ln e - \frac{1}{3} - 2\ln 1$ $= \frac{e^3}{3} + 2 - \frac{1}{3} - 0$ $= \frac{e^3 - 1}{3} + 2$	3
(c)	$y = \cos x$ $y = \cos x$ $0 \qquad \frac{\pi}{3} \qquad \frac{\pi}{2} \qquad x$ $Area = \int_0^{\frac{\pi}{3}} \cos s dx$ $= \left[\sin x\right]_0^{\frac{\pi}{3}}$ $= \sin \frac{\pi}{3} - \sin 0$ $= \frac{\sqrt{3}}{2} units^2$	3

Quest	tion 3 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	Midpoint of (1, 6) and (5, 0).	1
i)	$MP = \left(\frac{1+5}{2}, \frac{6+0}{2}\right) = \left(\frac{6}{2}, \frac{6}{2}\right) = (3,3)$	
ii)	Show that (3,3) lies on $2x-3y+3=0$	1
	LHS = 2(3) - 3(3) + 3	
	=6-9+3	
	=0=RHS	
iii)	So M lies on BD.	1
,	Gradient AC = $m_1 = \frac{6-0}{1-5} = \frac{6}{-4} = -\frac{3}{2}$	1
iv)	Find gradient m_2 of BD $2x-3y+3=0$	2
	2x-3y+3=0	
	3y = 2x + 3	
	$y = \frac{2}{3}x + 1$	
	$\therefore m_2 = \frac{2}{3}$	
	$m_1 \cdot m_2 = -\frac{3}{2} \cdot \frac{2}{3} = -1$	
	∴ BD is perpendicular to AC	
v)	$AC = \sqrt{(5-1)^2 + (0-6)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$	1
(vi	The lines AC and BD would form the diagonals of the quadrilateral	1
	ABCD.	
	BD is the perpendicular bisector of AC from ii and iv above The diagonals of a kite meet at right angles and one diagonal bisects	
	the other, so ABCD meets the criteria for a kite.	
(b) i)	$S_n = \frac{n}{2}(a+l)$	2
	Integers: $1 + 2 + 3 + \dots + 200$	
	$S_{200} = \frac{200}{2} (1 + 200) = 20100$	
ii)	100	3
11)	Mult of 2: $2+4+6+\ldots+200$ $S_{100} = \frac{100}{2}(2+200) = 10100$	3
	Mult of 3: $3 + 6 + 9 + \dots + 198$ $S_{66} = \frac{66}{2}(3 + 198) = 6633$	
	Mult of 6: $6 + 12 + 18 + + 198$ $S_{33} = \frac{33}{2}(6 + 198) = 3366$	
	:. Total Sum = Integers – (Mult 2 + Mult 3 - Mult 6) = $20\ 100 - 10\ 100 - 6\ 633 + 3\ 366$	
	= 6 733	

Quest	tion 4 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$\sqrt{\frac{\csc^2 x - \cot^2 x - \cos^2 x}{\cos^2 x}} = \sqrt{\frac{1 - \cos^2 x}{\cos^2 x}}$ $= \sqrt{\frac{\sin^2 x}{\cos^2 x}}$ $= \frac{\sin x}{\cos x}$ $= \tan x$	2
(b)	$2.12 \times 180 \div \pi = 121.467 = 121^{\circ}28'$	1
(c)	Domain $-3 \le x \le 3$ Range $0 \le y \le 3$	2
(d) i)	142 m A K B	1
ii)	$\tan 16^{\circ} = \frac{142}{AK}$ $\tan 20^{\circ} = \frac{142}{KB}$ $AK = \frac{142}{\tan 16^{\circ}}$ $KB = \frac{142}{\tan 20^{\circ}}$ $= 495.2$ $= 390.1$ Distance AB = 495.2 + 390.1 = 885 m (nearest m)	2
(e) i)	$PQ^{2} = 360^{2} + 480^{2} - 2 \times 360 \times 480 \cos 110^{\circ}$ $PQ^{2} = 478202$ $PQ = 692 \text{ km (nearest km)}$	2

Quest	tion 4	Trial HSC Examin	nation- Mathematics	
Part	Solution			Marks
(e)	First find	∠QPR		
ii)	$\sin \angle QP$	$R = \sin 110^{\circ}$		
	480		Can also be found	
	sin ∠QP	$R = \frac{480 \times \sin 110^{\circ}}{692}$	using cos rule using the 3 sides	
	sin∠ <i>QP</i>	R = 0.652		
	$\angle QPR =$	41°		2
	∠NPR =	150°		
	Bearing($(\angle NPQ) = 150^{\circ} - 41$	0	
	=109°			

Ques	tion 5 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$\angle EAD = 60^{\circ}$ (equilateral Δ)	3
i)	$\angle DAC = 45^{\circ}$ (isosceles right \triangle)	
	$\therefore \angle EAB = \angle EAD + \angle DAC + \angle CAB$	
	$=60^{\circ} + 45^{\circ} + 51^{\circ}$	
	$=156^{\circ}$	
ii)	$\angle ABC = 180^{\circ} - 156^{\circ}$ (cointerior \angle on \parallel lines AE and BC)	1
	= 24°	
(b)	$x = \frac{+5 \pm \sqrt{5^2 - 4 \times 2 \times (-4)}}{2(2)}$	2
	$5\pm\sqrt{57}$	
	4	
(c)	$= \frac{5 \pm \sqrt{57}}{4}$ $\cos A = \frac{4^2 + 5^2 - 7^2}{2 \times 4 \times 5} = -\frac{1}{5}$	2
	$2 \times 4 \times 5$ 5 $A = 101.53$	
	$=102^{\circ}$	
	102	
(d)	$\frac{5(m-3)-2(m-2)}{2}$	2
	(m-2)(m-3)	
	$=\frac{5m-15-2m+4}{(m-2)(m-3)}$	
	(m-2)(m-3) $=$ $3m-11$	
	$=\frac{3m-11}{(m-2)(m-3)}$	
(c)	$3x - y = 10 \tag{1}$	2
	$x = y + 2 \tag{2}$	
	3(y+2)-y=10 (3) sub (2) in (1)	
	3y + 6 - y = 10	
	2y = 4	
	y=2	
	$x = (2) + 2 \qquad \text{sub } y \text{ in } (2)$	
	x = 4	
	solution (4, 2)	

Ques	stion 6 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a) (i)	$y = x^{6} - 6x^{4}$ Crosses axis where $x^{6} - 6x^{4} = 0$ $x^{4} (x^{2} - 6) = 0$ $x^{4} (x - \sqrt{6})(x + \sqrt{6}) = 0$	2
	Crosses axis where $x = 0$ and $x = \pm \sqrt{6}$	
(a) (ii)	$y = x^6 - 6x^4$ $y' = 6x^5 - 24x^3$ $= 6x^3(x^2 - 4)$ $= 6x^3(x - 2)(x + 2)$ $y'' = 30x^4 - 72x^2$ Stationary points where x = 0, y = 0, y'' = 0 x = 2, y = -32, y'' = 192 Stationary points $(-2, -32), (0, 0)(2, -32)$ $y'' = 30x^4 - 72x^2$ At $x = 0$ $y'' = 0$ so test either side At $x = 1$ $y'' = -42$ ∴ concave down. At $x = -1$ $y'' = -42$ ∴ concave down ∴ maximum at $(0, 0)$ At $x = 2$ $y'' = 192$ ∴ minimum at $(2, -32)$. At $x = -2$ $y'' = 192$ ∴ minimum at $(-2, -32)$.	4

Ques	tion 6 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$y'' = 30x^4 - 72x^2$	
(iii)	$=6x^2\left(5x^2-12\right)$	
	$=6x^2\left(\sqrt{5}x-2\sqrt{3}\right)\left(\sqrt{5}x+2\sqrt{3}\right)$	
	x = 0 $y = 0$	
	$x = \frac{2\sqrt{3}}{\sqrt{5}} = \frac{2\sqrt{15}}{5} \qquad y = -20.736$	
	$x = -\frac{2\sqrt{3}}{\sqrt{5}} = -\frac{2\sqrt{15}}{5} \qquad y = -20.736$	
	Check for changes of concavity	
	From above, no change at (0, 0) but	2
	there is a change at $\left(\pm \frac{2\sqrt{15}}{5}, -20.736\right)$	
	Inflexions at $\left(\pm \frac{2\sqrt{15}}{5}, -20.736\right)$	
iv)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2

Ques	tion 6 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(b)	Stationary points on y occur where $f'(x)$ is stationary points on y occur where $f'(x)$ is negative where $f'(x)$ is negative where $f'(x)$ is negative $f'(x)$	x x

Quest		Trial HSC Examination- Mathematics	
Part	Solution		Marks
(a)	$x^2 = -8y$,	1
i)	$x^2 = -4($	2) y	
	a=2		
		y	
	•		
	←	×	
	/		
	,		
ii)	Focus is ODirectrix	(0, -2) is $y = 2$	1
iii)	$x^2 = -8y$	•	1
	$x^2 = (-8)$		
	, ,	3(-8) = 64	
		B) lies on the parabola.	
iv)		rough (0, -2) and (-8, -8)	2
	$m = \frac{-8 + 1}{9}$	$\frac{-2}{-0} = \frac{-6}{-8} = \frac{3}{4}$	
	_	$m(x-x_1)$	
	y - (-2)	$=\frac{3}{4}(x-0)$	
	$y = \frac{3}{4}x -$	-2	
v)	$3x - 4y - $ $x^2 = -8y$,	2
	$y = -\frac{x^2}{8}$		
	$y{8}$		
	$y' = -\frac{x}{4}$		
	At A y'	$=-\frac{-8}{4}=2$	
		=2(x8)	
	y + 8 = 2		
	y = 2x + 3	8	
	_		

		1
(p)	Substitute $y = x^2 - 3x$ into $y = 5x - x^2$	2
i)	$5x - x^2 = x^2 - 3x$	
	$2x^2 - 8x = 0$	
	2x(x-4)=0	
	x = 0, y = 0	
	x=4, $y=4$	
	Intersect at (0, 0) and (4, 4).	
ii)	$Area = \int_{0}^{4} 5x - x^{2} dx - \int_{0}^{4} x^{2} - 3x dx$ $= \int_{0}^{4} 8x - 2x^{2} dx$ $= \left[4x^{2} - \frac{2x^{3}}{3} \right]_{0}^{4}$ $= \left(64 - \frac{128}{3} \right) - 0$	3
	$= \frac{64}{3} = 21\frac{1}{3}u^2$	

Question 8 Trial HSC Examination- Mathematics			
Part	Solution		Marks
(a)	$x^2y=1$	ie $x^2 = \frac{1}{y}$	4
	1	$^{2}dy = \pi \int_{1}^{4} \frac{1}{y} dy$	
	$=\pi[\ln y]$	$_{1}^{4}=\pi \left[\ln 4-\ln 1\right]$	
	$=\pi \ln 4$	units ³	
(b)	$\log_8 4 = \frac{\log_8}{\log_8}$		1
(c)	∠EAC=67 ⁰		3
i)	∠BCA=∠E	EAC (Alt \angle 's, AE \parallel BF)	
	∴∠BCA=6	$BDC + \angle BCD$ (Ext $\angle = \text{sum of 2 interior opp} \angle s$)	
	$=32^{0}+35^{0}=6$	67^{0}	
	∴ ∆ABC is	isosceles (Base \angle of an isosceles Δ)	
ii)	$\angle BAC + 67$ $\angle BAC = 46$	$7^0 + 67^0 = 180^0$ 6^0	1
(d)		$\approx \frac{1}{6} \left\{ 12 + 4(8) + 2(0) + 4(3) + 5 \right\}$	2
		$\approx \frac{61}{6}$	
		$\approx 10\frac{1}{6}$	
(e)	5	$=(2^2-1)+(3^2-1)+(4^2-1)+(5^2-1)$	1
	=	= 3+8+15+24	
	=	= 50	

Ques	tion 9 Trial HSC Examination- Mathematics	
Part	Solution	Marks
(a)	$y = 2x^2 - 2$	3
	$V = \pi \int_0^6 x^2 dy$	
	$=\pi \int_0^6 \frac{y+2}{2} dy$	
	$=\pi \left[\frac{y^2}{4} + y\right]_0^6$	
	$=\pi\bigg[\bigg(\frac{36}{4}+6\bigg)-(0)\bigg]$	
	$=15\pi \text{ u}^3$	
(b)	$= 15\pi \text{ u}^3$ $\theta = 1 \text{ and } A = \frac{1}{2}r^2\theta$	1
	$A = 0.5 \times 5^2 \times 1 = 12.5 cm^2$	
(c)	$f'(x) = 2e^x$ $f'(0) = 2$ slope of tangent	2
	$y-2=2x \qquad y=2x+2$	
(d)	$4 \times 250 \times 30 = \$30\ 000$	1
i) ii)	120	
	$250 \times 1.02^{120} = \$2\ 691.29$ $250 \times (1.02^{120} + 1.02^{119} + 1.02^{118} + \dots + 1.02)$	1
iii)		3
	$250 \times \frac{a(r^{n}-1)}{r-1} = 250 \times \frac{1 \cdot 02(1 \cdot 02^{120}-1)}{1 \cdot 02 - 1}$	
	, 1 1 02 1	
	$250 \times 498.02328 = \$124\ 505.83$	
iv)	\$124 505·83 - \$30 000 = \$94 505.83	1

Quest	Question 10 Trial HSC Examination- Mathematics	
Part	Solution	Marks
a) i)	in this case the other side equals $200 - 2x$ Then $A = x(200 - 2x) = 200x - 2x^2$	
ii)	$\frac{dA}{dx} = 200 - 4x \text{ which} = 0 \text{ when } x = 50$ then A = 100 × 50 = 5 000m ² this is a maximum since if we take $w = 49$ then $l = 102$ and A = 4998	3
b) i)	$2y = x^{2} - 4x$ $2y + 4 = x^{2} - 4x + 4$ $4 \times \frac{1}{2}(y+2) = (x-2)^{2}$	2
ii)	Focus is (2, -1·5)	1
iii)	Directrix $y = -2.5$	1
c) i)	$I = \frac{1}{4}\sin(4x) + c$	1
ii)	$\int_{1}^{e^{4}} \frac{x}{x^{2} + 4} dx = \frac{1}{2} \int_{1}^{e^{4}} \frac{2x}{x^{2} + 4} dx$ $\frac{1}{2} \left[\ln(x^{2} + 4) \right]_{1}^{e^{4}} = \frac{1}{2} (\ln(e^{8} + 4) - \ln 5)$ $= \ln \sqrt{\frac{e^{8} + 4}{5}}$	2

End of Examination