

MATHEMATICS (EXTENSION 1)

2012 HSC Course Assessment Task 3 (Trial Examination) June 27, 2012

General instructions

- Working time 2 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 9)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

	STUDENT NUMBER:	# BOOKLETS USED:
	Class (please ✔)	
	\bigcirc 12M4A – Mr Weiss	\bigcirc 12M3C – Ms Ziaziaris
○ 12M4B – Mr Ireland		\bigcirc 12M3D – Mr Lowe
	\bigcirc 12M4C – Mr Fletcher	\bigcirc 12M3E – Mr Lam
ı		

Marker's use only.

QUESTION	1-10	11	12	13	14	Total	%
MARKS	10	15	15	15	15	70	

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

Marks

Which is the correct value of $\lim_{x\to 0} \frac{3x}{\sin 2x}$?

1

- (A) 0
- (B) $\frac{2}{3}$
- (C) $\frac{3}{2}$
- (D) 3
- Which of the following is the acute angle (correct to the nearest degree) between the two lines 2x - y + 1 = 0 and 3x + y - 4 = 0?

1

- (A) 11°
- (B) 45°
- (D) 135°
- Which of the following expressions will result in the coordinates of the point Pwhich divides the interval AB externally in the ratio 3:2, given A is (-5,2) and B is (4,5)?

1

- (A) $\left(\frac{(2)(-5) + (-3)(4)}{-3 + 2}, \frac{(2)(2) + (-3)(5)}{-3 + 2}\right)$
- (B) $\left(\frac{(-3)(-5) + (2)(4)}{-3 + 2}, \frac{(-3)(2) + (2)(5)}{-3 + 2}\right)$
- (C) $\left(\frac{(-2)(-5) + (-3)(4)}{-3 + 2}, \frac{(-2)(2) + (-3)(5)}{-3 + 2}\right)$
- (D) $\left(\frac{(2)(2) + (-3)(5)}{-3 + 2}, \frac{(2)(-5) + (-3)(4)}{-3 + 2}\right)$

Which of the following is the derivative of xe^{2x} ?

1

- (A) $e^{2x}(1+x)$ (B) $e^{2x}(1+2x)$ (C) $2x^2e^{2x}$
- (D) $\frac{1}{2}xe^{2x}$
- Which of the following represents the complete solutions for $-180^{\circ} < \theta \le 180^{\circ}$ to the equation $\cos^2\frac{\theta}{2} = \frac{1}{4}$

1

- (A) 60° , 120°
- (B) 120° , 240° (C) $\pm 60^{\circ}$, $\pm 120^{\circ}$ (D) $\pm 120^{\circ}$
- **6.** What should $\int \cos^2 \frac{1}{2} x \, dx$ be transformed into, in order to find its primitive?

1

(A) $\int \frac{1}{2} - \frac{\cos x}{2} dx$

(C) $\int \frac{1}{2} - \frac{\cos 2x}{2} dx$

(B) $\int \frac{1}{2} + \frac{\cos 2x}{2} dx$

(D) $\int \frac{1}{2} + \frac{\cos x}{2} dx$

- It is known that $\log_e x + \sin x = 0$ has a root close to x = 0.5. Using one application of Newton's method, which of the following gives a better approximation to 2 decimal places?
- 1

- (A) 0.43
- (B) 0.73
- (C) 0.57
- (D) 0.27
- Which of the following graphs represents $y = \cos^{-1} 2x$?

1

(C)

If $\sqrt{3}\cos x - \sin x \equiv R\cos(x+\alpha)$, which of the following gives the correct value of α ?

1

- (A) $\frac{\pi}{6}$
- (B) $\frac{5\pi}{6}$ (C) $\frac{7\pi}{6}$
- (D) $\frac{11\pi}{6}$
- 10. Zac and Mitchell play a series of games. The series ends when one player has won two games. In any game the probability that Zac wins is $\frac{3}{5}$ and the probability that Mitchell wins is $\frac{2}{5}$.

1

What is the probability that three games are played?

- (A) $\frac{6}{25}$

- (C) $\frac{12}{25}$ (D) $\frac{18}{25}$

End of Section I. Examination continues overleaf.

Section II: Short answer

Question 11 (15 Marks) Commence a NEW page. Marks

(a) Solve for
$$x$$
: $\frac{1}{x} > x$

(b) Evaluate
$$\int_0^2 \frac{dx}{\sqrt{16-x^2}}$$
.

(c) Find the exact value of
$$\sin\left(2\tan^{-1}\frac{3}{7}\right)$$
, showing full working.

(d) Solve
$$\sin 2\theta = \sin \theta$$
, $0 \le \theta \le 2\pi$.

(e) Using the substitution
$$u = \tan x$$
, find the exact value of

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

Question 12 (15 Marks) Commence a NEW page. Marks

(a) If
$$P(x) = x^3 - 6x^2 + ax - 4$$
, $a > 0$,

- i. Given all the roots of P(x) = 0 are real and positive, and that one of the roots is the product of the other two roots, show that a = 10.
- ii. Show that x 2 is a factor of $P(x) = x^3 6x^2 + 10x 4$.
- (b) Air is being pumped into a spherical balloon at a rate of $20 \,\mathrm{cm}^3 \mathrm{s}^{-1}$. Find the rate of increase of the surface area of the balloon when the radius is 5 cm.
- (c) A particle moves along the x axis such that its velocity v ms⁻¹ is given by

$$v^2 = -4x^2 + 8x + 32$$

- i. By expressing the acceleration as a function in terms of x, prove that the particle is undergoing simple harmonic motion.
- ii. Find the amplitude.
- iii. Find the maximum acceleration.

Question 13 (15 Marks)

Commence a NEW page.

Marks

- (a) Prove by mathematical induction that $5^n + 2 \times 11^n$ is divisible by 3, where n is a positive integer.
- (b) Show that the shaded area is $A = \frac{1}{2} \ln 2 \text{ units}^2$.

(c) Two circles intersect at A and B. CAE is a straight line where C is a point on the first circle and E is a point on the second circle. The tangents to the circles at C and E meet at D.

Copy the diagram into your writing booklet.

Prove that BCDE is a cyclic quadrilateral, without adding any construction lines.

(d) The acceleration of a raindrop which at time t seconds is falling with speed v metres per second is given by the equation

$$\frac{dv}{dt} = -\frac{1}{3}\left(v - 3g\right)$$

where g is a constant.

- i. Show that $v = 3g + Ae^{-\frac{1}{3}t}$, where A is a constant, satisfies the above equation.
- ii. Given that the initial velocity has a value of g, find the value of A.
- iii. After how many seconds is the raindrop falling with a speed of 2g metres per second? Give your answer correct to 1 decimal place.
- iv. What value does v approach as $t \to \infty$?

1

1

1

Question 14 (15 Marks)

Commence a NEW page.

Marks

(a) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The tangent at P and the line through Q parallel to the axis of the parabola meet at the point R.

The tangent at Q and the line through P parallel to the axis of the parabola meet at the point S.

- i. Show that the equations of the tangents at P and Q are $y = px ap^2$ and $y = qx aq^2$ respectively.
- ii. Show that the coordinates of S and R are

 $\mathbf{2}$

$$S(2ap, 2apq - aq^2)$$
 $R(2aq, 2apq - ap^2)$

iii. Show that PQRS is a parallelogram.

2

 $\mathbf{2}$

iv. Show that the area of this parallelogram is $2a^2 |p-q|^3$.

Question 14 continues overleaf...

1

Question 14 continued from the previous page...

(b) A projectile is thrown horizontally from the top of a 125 m tower with velocity V metres per second. It clears a second tower of height 100 m by a distance of c metres, as shown. The two towers are $20\sqrt{5}$ metres apart.

i. The equations of motion for this system are

$$\begin{cases} x = Vt \\ y = -5t^2 + 125 \end{cases}$$

(Do not prove this)

Where is the origin of the system being taken from?

- ii. Show that $V = \frac{100}{\sqrt{25 c}}$.
- iii. Prove that the minimum initial speed of the projectile to just clear the $100\,\mathrm{m}$ tower is $20\,\mathrm{ms}^{-1}$.
- iv. Hence, find how far past the 100 m tower will the projectile strike the ground.
- v. Determine the vertical component of the velocity of the projectile when it strikes the ground.

End of paper.

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \qquad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a} + C, \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g " \bullet "

STUDENT NUMBER:

Class (please ✓)

○ 12M4A – Mr Weiss

○ 12M3C – Ms Ziaziaris

 \bigcirc 12M4B – Mr Ireland

○ 12M3D – Mr Lowe

 \bigcirc 12M4C – Mr Fletcher

 \bigcirc 12M3E – Mr Lam

- 1 (A) (B) (C) (D)
- $\mathbf{2}$ (A) (B) (C) (D)
- 3 (A) (B) (C) (D)
- 4 (A) (B) (C) (D)
- $\mathbf{5}$ (A) (B) (C) (D)
- 6 (A) (B) (C) (D)
- $7 \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D}$
- 9- (A) (B) (C) (D)
- 10 (A) (B) (C) (D)

Suggested Solutions

Section I

(Lowe)

1. (C) **2.** (B) **3.** (A) **4.** (B) **5.** (D)

6. (D) **7.** (C) **8.** (D) **9.** (A) **10.** (C)

Question 11 (Lam)

- (a) (3 marks)
 - \checkmark [1] for multiplying by square of denominator.
 - \checkmark [0] for entire part if only multiplying by denominator.
 - \checkmark [1] for each correct inequality.

$$\frac{1}{x} > x$$

$$\times x^{2}$$

$$x > x^{3}$$

$$x^{3} - x < 0$$

$$x(x^{2} - 1) < 0$$

$$x(x - 1)(x + 1) < 0$$

From the sketch,

$$x < -1 \text{ or } 0 < x < 1$$

- (b) (2 marks)
 - \checkmark [1] for correct primitive.
 - \checkmark [1] for correct evaluation of limits.

$$\int_0^2 \frac{dx}{\sqrt{16 - x^2}} = \left[\sin^{-1} \frac{x}{4}\right]_0^2$$
$$= \sin^{-1} \frac{1}{2} - \sin^{-1} 0$$
$$= \frac{\pi}{6}$$

- (c) (3 marks)
 - \checkmark [1] for drawing relevant right-angled triangle.
 - \checkmark [1] for expanding $\sin 2\alpha$.
 - \checkmark [1] for final answer.

Let $\alpha = \tan^{-1} \frac{3}{7}$. Then $\tan \alpha = \frac{3}{7}$:

$$\sin\left(2\tan^{-1}\frac{3}{7}\right) \equiv \sin 2\alpha$$

$$= 2\sin \alpha \cos \alpha$$

$$= 2 \times \frac{3}{\sqrt{58}} \times \frac{7}{\sqrt{58}}$$

$$= \frac{42}{58} = \frac{21}{29}$$

- (d) (3 marks)
 - ✓ [1] for factorising expression into $\sin \theta (2\cos \theta 1) = 0$.
 - \checkmark [1] for solutions in positive integral multiples of π .
 - \checkmark [1] for solutions in multiples of $\frac{\pi}{3}$.

$$\sin 2\theta = \sin \theta$$

$$2\sin \theta \cos \theta - \sin \theta = 0$$

$$\sin \theta (2\cos \theta - 1) = 0$$

$$\sin \theta = 0 \qquad \cos \theta = \frac{1}{2}$$

$$\theta = 0, \pi, 2\pi \qquad \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$\therefore \theta = 0, \pi, 2\pi, \frac{\pi}{3}, \frac{5\pi}{3}$$

(e) (4 marks)

 \checkmark [1] for changing limits.

 \checkmark [1] for making algebraic substitution.

 \checkmark [1] for correct primitive.

 \checkmark [1] for final answer.

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

Letting $u = \tan x$,

$$\frac{du}{dx} = \sec^2 x$$

$$\therefore du = \sec^2 x \, dx$$

$$x = 0 \quad \Rightarrow u = 0$$

$$x = \frac{\pi}{4} \quad \Rightarrow u = 1$$

$$\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{3 + \tan^2 x} \, dx$$

$$= \int_{u=0}^{u=1} \frac{\sec^2 x \, dx}{3 + u^2}$$

$$= \int_0^1 \frac{du}{3 + u^2}$$

$$= \frac{1}{\sqrt{3}} \left[\tan^{-1} \frac{u}{\sqrt{3}} \right]_0^1$$

$$= \frac{1}{\sqrt{3}} \left(\tan^{-1} \frac{1}{\sqrt{3}} - \tan^{-1} 0 \right)$$

$$= \frac{1}{\sqrt{3}} \times \frac{\pi}{6}$$

$$= \frac{\pi}{6\sqrt{3}} \left(= \frac{\pi\sqrt{3}}{18} \right)$$

Question 12 (Lowe)

(a) i. (3 marks) $\checkmark \quad [1] \text{ for } \alpha\beta = 2.$ $\checkmark \quad [1] \text{ for } \alpha + \beta = 4.$ $\checkmark \quad [1] \text{ for final answer.}$ $P(x) = x^3 - 6x^2 + ax - 4. \text{ Let the roots be } \alpha, \beta \text{ and } \alpha\beta.$

• Sum of roots:

$$\alpha + \beta + \alpha \beta = -\frac{b}{a} = 6 \quad (12.1)$$

• Pairs of roots:

$$\alpha\beta + \alpha^2\beta + \beta^2\alpha = \frac{c}{a} = a$$
(12.2)

• Product of roots:

$$\alpha\beta (\alpha\beta) = -\frac{d}{a} = 4$$

$$\alpha^2\beta^2 = 4$$

$$\therefore \alpha\beta = 2 \qquad (12.3)$$

as roots are positive.

Substitute (12.3) into (12.1):

$$\alpha + \beta + 2 = 6$$

$$\therefore \alpha + \beta = 4$$
 (12.4)

Substitute (12.4) into (12.2) to find a:

$$\alpha\beta + \alpha\beta(\alpha + \beta) = a \qquad (12.5)$$
$$2 + 2(4) = a$$
$$\therefore a = 10$$

ii. (2 marks)

 \checkmark [2] for correct application of factor theorem.

If x-2 is a factor then P(2)=0.

$$P(2) = 2^3 - 6(2^2) + 10(2) - 4$$

= 8 - 24 + 20 - 4 = 0

(b) (3 marks)

 \checkmark [1] for $\frac{dr}{dt}$.

 \checkmark [1] for $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$.

 \checkmark [1] for final answer.

$$\frac{dV}{dt} = 20 = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dr} = \frac{4}{3} \times \pi \times 3r^2 = 4\pi r^2$$

$$\therefore \frac{dV}{dt} = 20 = 4\pi r^2 \Big|_{r=5} \times \frac{dr}{dt}$$

$$= 4\pi \times 25 \times \frac{dr}{dt}$$

$$\therefore \frac{dr}{dt} = \frac{1}{5\pi}$$

Now
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

$$SA = 4\pi r^{2}$$

$$\therefore \frac{dA}{dr} = 8\pi r$$

$$\frac{dA}{dt} = 8\pi r \Big|_{r=5} \times \frac{1}{5\pi}$$

$$= 8 \text{ cm}^{2} \text{s}^{-1}$$

(c) i. (3 marks)

 \checkmark [1] for using $\frac{d}{dx}(\frac{1}{2}v^2)$ to find acceleration.

 \checkmark [1] obtaining $\ddot{x} = -4x + 4$.

✓ [1] factorising and noting form $\frac{dv}{dt} = -n^2 (x - x_0)$ for SHM.

$$v^{2} = -4x^{2} + 8x + 32$$

$$\frac{1}{2}v^{2} = -2x^{2} + 4x + 16$$

$$\ddot{x} = \frac{dv}{dt} = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right)$$

$$= \frac{d}{dx}\left(-2x^{2} + 4x + 16\right)$$

$$= -4x + 4 = -4(x - 1)$$

As acceleration is proportion to the opposite direction of displacement, hence the particle is moving in simple harmonic motion with centre at x = 1.

ii. (2 marks)

$$\checkmark$$
 [1] for $x = 4$, $x = -2$.

 \checkmark [1] for finding amplitude.

The amplitude occurs when $\dot{x} = 0$.

$$-4x^{2} + 8x + 32 = 0$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$\therefore x = 4, -2$$

$$a = \frac{4 + |-2|}{2} = 3$$

As the centre of motion is x = 1 and particle's maximum displacement is 4 or -2, therefore the amplitude is a = 3.

iii. (1 mark)

Maximum acceleration occurs at the amplitude, i.e. x = 4 or x = -2.

$$\ddot{x} = -4(x-1)\Big|_{x=-2}$$
$$= -4(-2-1) = 12$$

Question 13 (Ziaziaris)

(a) (3 marks)

 \checkmark [1] for proving base case.

 \checkmark [1] for inductive step.

✓ [1] for required proof.

Let P(n) be the statement $5^n + 2 \times 11^n$ is divisible by 3, i.e.

$$5^n + 2 \times 11^n = 3J$$

where $J \in \mathbb{N}$.

• Base case: P(1):

$$5^1 + 2 \times 11 = 5 + 22 = 27$$

which is divisible by 3. Hence P(1) is true.

Inductive step:

- Assume P(k) is true for some $k \in \mathbb{N}, k < n$, i.e.

$$5^k + 2 \times 11^k = 3M$$

where $M \in \mathbb{N}$. Alternatively,

$$5^k = 3M - 2 \times 11^k$$

- Examine P(k+1):

$$5^{k+1} + 2 \times 11^{k+1}$$

$$= 5^k 5^1 + 2 \times 11^{k+1}$$

$$= 5 \left(3M - 2 \times 11^k\right) + 2 \times 11^{k+1}$$

$$= 3 \times 5M - 10 \times 11^k + 2 \times 11 \times 11^k$$

$$= 3 \times 5M - 10 \times 11^k + 22 \times 11^k$$

$$= 3 \times 5M + 12 \times 11^k$$

$$= 3 \left(5M + 4 \times 11^k\right) \equiv 3P$$

$$\in \mathbb{N}$$

where $P \in \mathbb{N}$. Hence P(k+1) is true.

Since $k \in \mathbb{N}$ and truth in P(k) also leads to truth in P(k+1), therefore P(n) is true by induction.

(b) (3 marks)

 \checkmark [1] for coverting integrand to $\frac{\sin y}{\cos y}$

 \checkmark [1] for correct primitive

 \checkmark [1] for final answer.

$$A = \int_0^{\frac{\pi}{4}} \tan y \, dy$$

$$= \int_0^{\frac{\pi}{4}} \frac{\sin y}{\cos y} \, dy$$

$$= \left[-\log_e(\cos y) \right]_0^{\frac{\pi}{4}}$$

$$= -\log_e \cos \frac{\pi}{4} + \log_e \cos 0$$

$$= -\log_e \frac{1}{\sqrt{2}} + \log_e 1$$

$$= -\log_e 2^{-\frac{1}{2}} = \frac{1}{2}\log_e 2$$

(c) (4 marks) – marking scheme embedded inline. Presence of √indicates 1 mark.

- ✓ Let $\angle DCE = \alpha$ and $\angle DEC = \beta$. ∴ $\angle CBA = \alpha$ (\angle in alternate segment)
- ✓ Similarly, $\angle ABE = \beta$ (\angle in alternate segment)
- ✓ Also, $\angle CDE = 180^{\circ} (\alpha + \beta)$. (Angle sum of $\triangle CDE$)
- Hence $\angle CDE + \angle CBE = 180^{\circ}$
- \checkmark Opposite \angle in BCDE are supplementary. Hence BCDE is a cyclic quadrilateral.

(d) i. (1 mark)

$$v_{-3g} = 3g + Ae^{-\frac{1}{3}t}$$

$$v - 3g = Ae^{-\frac{1}{3}t}$$

$$\frac{dv}{dt} = -\frac{1}{3} \underbrace{Ae^{-\frac{1}{3}t}}_{=(v-3g)}$$

$$= -\frac{1}{3}(v - 3g)$$

ii. (1 mark)

$$t = 0, v = g$$

$$\therefore g = 3g + Ae^{0}$$

$$\therefore A = -2g$$

iii. (2 marks)

$$v = 2g, t = ?$$

$$2g = 3g - 2ge^{-\frac{1}{3}t}$$

$$-g = -2ge^{-\frac{1}{3}t}$$

$$\frac{1}{2} = e^{-\frac{1}{3}t}$$

$$-\frac{1}{3}t = \log_e \frac{1}{2} = -\log_e 2$$

$$\therefore t = 3\log_e 2 \approx 2.1 \operatorname{seconds}$$

iv. (1 mark)As $t \to \infty$, $v \to 3g$.

Question 14 (Ireland/Fletcher)

(a) i. (2 marks)

 \checkmark [1] for proving $\frac{dy}{dx} = p$ at P.

 \checkmark [1] for equation of tangent at P.

$$x^{2} = 4ay$$
 \Rightarrow $y = \frac{x^{2}}{4a}$

$$\frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a}$$

At x = 2ap,

$$\frac{dy}{dx} = \frac{2ap}{2a} = p$$

Equation of the tangent at P:

$$y - ap^2 = p(x - 2ap) = px - 2ap^2$$
$$y = px - ap^2$$

Similarly, the tangent at Q is

$$y = qx - aq^2$$

ii. (2 marks)

 \checkmark [1] for each y coordinate.

Coordinates of S arise from the intersection of x = 2ap and $y = qx - aq^2$:

$$y = q(2ap) - aq^2 = 2apq - aq^2$$

$$\therefore S(2ap, 2apq - aq^2)$$

Coordinates of R arise from the intersection of x = 2aq and $y = px - ap^2$:

$$y = p(2aq) - ap^2 = 2apq - ap^2$$

$$\therefore R(2aq, 2apq - ap^2)$$

iii. (2 marks)

 \checkmark [1] for showing $PS \parallel QR$.

 \checkmark [1] for showing PS = QR.

opposite sides equal and parallel. Hence
$$PQRS$$
 is a parallelogram.

As PS = QR, hence one pair of

Alternatively, if PQRS is a parallelogram, then the diagonals bisect each other; i.e. QS and PR share the same midpoint. Show via midpoint formula results in

$$MP_{QS} = \left(\frac{a(p+q)}{2}, apq\right)$$

 $MP_{PR} = \left(\frac{a(p+q)}{2}, apq\right)$

iv. (2 marks)

 \checkmark [1] for h (fully)

 \checkmark [1] for area.

- Use A = bh.
- h is perpendicular distance from Q to PS.
- Use $b = d_{PS}$.

Using the perpendicular dist formula with $x = 2ap \& Q(2aq, aq^2)$:

$$h = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|2aq(1) + 0 - 2ap|}{\sqrt{1^2 + 0}}$$

$$= \frac{|2aq - 2ap|}{1} = 2a|q - p|$$

$$= 2a|p - q|$$

As
$$|p-q| = |q-p|$$
.

$$A = bh$$

$$= 2a |p-q| \times a(p-q)^2$$

$$= 2a^2 |p-q|^3$$

$$d_{PS} = \sqrt{(2ap - 2ap)^2 + (ap^2 - (2apq - aq^2))^2}$$

$$= \sqrt{(a(p-q)^2)^2}$$

$$= a(p-q)$$

$$d_{QR} = \sqrt{(2aq - 2aq)^2 + (aq^2 - (2apq - ap^2))}$$

$$= \sqrt{a(q-p)^2} = \sqrt{a(p-q)^2}$$

$$= a(p-q)$$

(b) i. (1 mark)
Origin is at the base of tower.

ii. (2 marks)
$$\checkmark \quad [1] \ \text{for} \ 100+c=-5\left(\frac{400\times5}{V^2}\right)+125.$$

$$\checkmark \quad [1] \ \text{for final result shown}.$$

When $x = 20\sqrt{5}$, y = 100 + c. Using x = Vt,

$$20\sqrt{5} = Vt$$
$$\therefore t = \frac{20\sqrt{5}}{V}$$

Substitute into $y = -5t^2 + 125$,

$$100 + c = -5\left(\frac{20\sqrt{5}}{V}\right)^{2} + 125$$

$$= -5\left(\frac{400 \times 5}{V^{2}}\right) + 125$$

$$-25 + c = -5 \times \frac{400 \times 5}{V^{2}}$$

$$25 - c = \frac{25 \times 400}{V^{2}}$$

$$V^{2} = \frac{10000}{25 - c}$$

$$\therefore V = \frac{100}{\sqrt{25 - c}} \quad (V > 0)$$

iii. (1 mark) Projectile just clears tower when c = 0.

$$V = \frac{100}{\sqrt{25 - c}} \bigg|_{c=0} = 20 \,\mathrm{ms}^{-1}$$

iv. (2 marks)

 \checkmark [1] for x = 100.

 \checkmark [1] for final answer.

Projectile strikes ground when y = 0.

$$-5t^{2} + 125 = 0$$
$$5t^{2} = 125$$
$$\therefore t^{2} = 25 \implies t = 5$$

When t = 5,

$$x = Vt = 20 \times 5 = 100$$

Hence projectile will strike the ground $100 - 20\sqrt{5}$ metres past the second tower.

v. (1 mark)

$$y = -5t^{2} + 125$$
$$\dot{y} = -10t \Big|_{t=5} = -50 \,\text{ms}^{-1}$$