

EPPING BOYS HIGH SCHOOL 213 Vimiera Rd Marsfield

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time 5 minutes.
- Working Time 3 hours.
- Write using a blue or black pen.
- Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.

Total marks (120)

- Attempt Questions 1-10.
- All questions are of equal value.
- Begin each question in a new booklet
- Ensure your name and teachers name is on every answer booklet and on this examination paper.
- This paper and all examination booklets must remain in the exam centre

Name						Teacher	r			
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total

Quest	ion 1 (12 Marks)	Start a new booklet	Marks
(a)	Fully simplify $\frac{x}{x^2 - 1} + \frac{3}{x + 1}$	_ 1	2
(b)	If $\tan \theta = \frac{7}{8}$ and , find the	exact value of $\sin \theta$	2
(c)	Solve $ 16 - 4x \le 12$		2
(d)	Find $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$		2
(e)	Find the period and amplitude	ude for the graph of $y = 3\cos 4x$.	2

(f) Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for \$67.50, find the cost price.

Questi	ion 2	(12 Marks)	Start a new booklet	Marks
(a)	Given	the points $A(1,2)$), B(7, 8), C(-1,4)	
	(i)	Find the equation	on of the line BC in general form	2
	(ii)	Find the perpen	dicular distance from point A to the line BC.	2
	(iii)	Hence, or other	wise, find the area of ΔABC .	2
	(iv)	What angle doe	s BC make with the positive direction of the <i>x</i> axis?	1
	(v)	What are the co	ordinates of the midpoint of AB?	1
(c)	Find t	he value of \log_e	$(e^2) + \log_e 1$	2

(d) Solve
$$\frac{1}{x} = x - 1$$
 leaving your answer in exact form. 2

Question 3	(12 Marks)	Start a new booklet	Marks

- (a) Differentiate with respect to *x*.
 - (i) $x.e^x$ 2

(ii)
$$\frac{\sin x}{x^2}$$
 2

(b) Find:

(i)
$$\int e^{-2x} dx$$
 2

(ii)
$$\int_0^{\pi} \sec^2 \frac{x}{4} \, dx$$
. 2

(c) If
$$\alpha$$
 and β are the roots of the equation $2x^2 - 3x + 4$
Find:

(i) $\alpha + \beta$. 1

(ii)
$$2\alpha\beta$$
. 1

(iii)
$$\alpha^2 + \beta^2$$
 2

Ques	tion 4	(12 Marks)	Start a new booklet	Marks
(a)	4+4	$x + 4x^2 + 4x^3 + 4x^4$	+ is a geometric series	
	(i)	Under what con-	ditions does it have a limiting sum?	1
	(ii)	The limiting sur	n is 12. What is the value of <i>x</i> ?	2
(b)	y = x	$x^2 - 7x + 19$ meets	with $y=3x-6$.	2
	Prove	$y = 3x - 6_{is tang}$	ent to the parabola	
(c)	A shi	p sails from port A	A, 80 kilometres due west, to a point B.	
	It the	n proceeds a distar	nce of 70 kilometers on a bearing of 15°	
	to a p	ooint C.		
	(i)	Draw a diagram	to illustrate the information given.	1
	(ii)	Find the distanc	e AC	2
(d)	The s	sector ABC has $r =$	5cm	2

(d) The sector ABC has r = 5cm and the arc length BA = 6cm. Calculate the area of the sector to the nearest square centimeter.

(e) Find the value of
$$\frac{2^{3n-1}}{8^{n-1}} \times \frac{25^m}{5^{2m+1}}$$

The curve passes through (0, 2). What is the equation of the function?

Quest	ion 6	(12 Marks) Start a new booklet	Marks
(a)	A curv	ve has a gradient function with equation $\frac{dy}{dx} = (x-1)(x+2)$.	
	(i)	If the curve passes through the point $(1, \frac{5}{6})$, what is the	2
		equation of the curve?	
	(ii)	Find the coordinates of the stationary points and determine	2
		their nature.	
	(iii)	Find any points of inflexion.	1
	(iv)	Graph the function showing all the main features.	2
(b)	Find the	the equation of the tangent to the curve $y = \sin 3x - 1$ point where $x = \frac{\pi}{12}$	3
	Write	your equation in gradient intercept form.	

(c) Fully factorise
$$729-64m^6$$

Questi	ion 7 (12 Marks)	Start a new booklet	Marks
(a)	The parabola $y=4-x^2$ and Find the area bounded by the	I the line $y=2-x$ intersect at points A and B. e parabola and the line.	3
(b)	Find all the solutions to (x^2)	$-1)^2 - 11(x^2 - 1) + 24 = 0$	3
(c)	Use Simpson's Rule to evaluation values	uate $\int_{1}^{3} \log_{e} x^{2} dx$ to 1 decimal place	3
(d)	$y = 2 + \frac{1}{x}$		3

Find the area between the curve and the y axis between y = 4 and y = 6.

Question 8 (12 Marks) Start a new booklet

Marks

2

(a) The graph of the curve y = f(x) is drawn below, with arrows pointing to named points on the curve

(d) If
$$y = e^{\tan x}$$
 find $f'\left(\frac{\pi}{4}\right)$

Questi	on 9	(12 M	arks)		Start a new booklet	Marks
(a)	A parti	icle mov	ves in a	ı straig	th line so that its displacement (in m) from a	
	fixed p	oint O	at time	t seco	nds is given by $t^3 - 9t - 12$	
	Find:					
	(i)	The in	itial ve	locity		1
	(ii)	When	the par	ticle is	s at rest.	1
	(iii)	The di	stance	covere	ed in the first 4 seconds	2
(b)	The ar	ea boun	ded by	the cu	arve $y = \sqrt{16 - x^2}$ between the lines $x = 1$ and	3
	x = 3 is	s rotated	l about	the x	-axis. Find the volume of the solid of	
	revolu	tion for	ned.			
(c)	On the	Cartesi	an Pla	ne, ske	etch the region satisfying the inequalities	3
	$x \ge$	2 y	$v \ge 4$	and	$y \le 8-x$	

(d) What is the domain and the range for $y = |\log_e(x+2)|$ 2

Question 10 (12 Marks)Start a new bookletMarks

- (a) An open cylindrical can with a base but no lid is made from 300cm^2 of sheet metal.
 - (i) Show that the volume of the can is given by $V = 150r \frac{1}{2}\pi r^3$. 2
 - (ii) Find the radius of the cylinder that gives the maximum volume. 4Justify that it gives a maximum and calculate this volume.

- (b) Sketch y = |x-3| and $y = \frac{x}{2} 1$ on the same set of axes. 3 Hence solve 2|x-3| > x-2
- (c) A triangular yard has its angles shown in radians.Calculate the side *x* correct to the nearest cm.

End of Examination.

EBHS

2009

TRIAL HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics Solutions

Solutions	Marks/Comments
Question 1 (a) $\frac{x}{x^2 - 1} + \frac{3x - 3}{x^2 - 1} = \frac{4x - 3}{x^2 - 1}$ (b) $x^2 = 7^2 + 8^2$ $= 49 + 64$ $x = 113$ $x = \sqrt{113}$ Since $\tan \theta = \frac{7}{8} \operatorname{and} \cos \theta < 0$ $3^{rd} \operatorname{Quadrant} \therefore \sin \theta < 0$	2 1 1
(c) $ 16-4x \le 12$ so $ 4-x \le 3$ $-3 \le 4-x \le 3$ $-7 \le -x \le -1$ $\therefore 1 \le x \le 7$ (d) $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3} \frac{(x+1)(x-3)}{x - 3}$ $\lim_{x \to 3} (x+1) = 4$ (e) Amplitude = 3 Period = $\frac{2\pi}{4} = \frac{\pi}{2}$ (f) $130\% = \$67.50$ $1\% = \frac{67.50}{130} = 0.51923$ Cost Price = $\frac{67.50}{130} \times 100 = \51.92	1 1 1 1 1 2 Marks - 1 for 1% 1 for Cost price

Solutions	Marks/Comments
$\frac{\text{Question 2}}{(2) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2$	
(a) (1) $A(1,2), B(7, 6), C(-1,4)$	1 for method
BC has $m = \frac{72}{2}$ $y - y = m(x - x)$ $y - 8 = \frac{1}{(x - 7)}$ $2y - 16 = x - 7$	1.6
$\int_{0}^{y} y_{1} = m(x - x_{1}) y = 0 = \frac{1}{2}(x - y) = \frac{1}{2}y = 10 = x - y$	1 for correct answer
(ii) $d = \frac{ Ax_1 + By_1 + C }{\sqrt{A^2 + B^2}} = \frac{ 1 \times 1 - 2 \times 2 + 9 }{\sqrt{5}} = \frac{6\sqrt{5}}{5}$	1 for sub, 1 for get rationalising denom not req ^d Award full marks for correct use of incorrect equation for part i
(iii) $BC = \sqrt{8^2 + 4^2} = \sqrt{80} = 4\sqrt{5}$ $\therefore A = \frac{1}{2} \times \frac{6\sqrt{5}}{5} \times 4\sqrt{5} = 12$	2 allow approximation
(iv) $m_{BC} = \frac{1}{2}$ $\tan^{-1}(.5) = 26.565 \cong 27^{\circ}$	1
(v) midpoint = $(4, 5)$	1
(b) $2 + 0 = 2$	2 allow 1 for part correct
$1 = x^{2} - x 0 = x^{2} - x - 1$ (c) $b + \sqrt{b^{2} - 4aa} = 1 + \sqrt{5}$	1 for the eqn and Q form
$\frac{-b\pm\sqrt{b}-4ac}{2a} = \frac{1\pm\sqrt{3}}{2}$	1 for the get /12

Solutions	Marks/Comments
Ouestion 3 i. $\frac{d}{dx}(x.e^x) = vu' + uv' = e^x + xe^x = e^x(1+x)$	2 factorising not required
ii. $\frac{d}{dx}\frac{\sin x}{x^2} = \frac{vu'-uv'}{v^2} = \frac{x^2\cos x - 2x\sin x}{x^4}$	2
(b) i. $\int e^{-2x} dx = -\frac{1}{2}e^{-2x} + c$	2 must have c
ii. $\int_0^{\pi} \sec^2 \frac{x}{4} dx = 4 \left[\tan \frac{x}{4} \right]_0^{\pi}$ = $4 \left[\tan \frac{\pi}{4} - \tan 0 \right] = 4$	2

(c) i. 1.5
ii.
$$2\alpha\beta = \frac{2c}{a} = 4$$

iii. $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2.25 - 4 = -1.75$
2

Solutions	Marks/Comments
Question 4a) i) $ x < 1$ or $-1 < x < 1$	1
ii) $S_{\infty} = 12 = \frac{a}{1-r} = \frac{4}{1-x}$ $1-x = \frac{4}{12} x = \frac{2}{3}$	1 1
(b) $\frac{x^2 - 7x + 19 = 3x - 6}{b^2 - 4ac} = 100 - 4 \times 25 = 0$ $\therefore 1 \text{ root and tangent}$	1 1
(c) $a^2 = b^2 + c^2 - 2bc\cos A$ $= 70^2 + 80^2 - 2 \times 70 \times 80\cos 75$ = 8401.2266 a = -01.66m	1 For diagram
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
(d) $\theta = 6/5 = 1.2^{\circ}$ $A = \frac{\theta}{2}r^2$	1
= $.6 \times 25 = 15cm^2$ e) $\frac{2^{3n-1}}{8^{n-1}} \times \frac{25^m}{5^{2m+1}} = \frac{2^{3n-1}}{2^{3(n-1)}} \times \frac{5^{2m}}{5^{2m+1}} = \frac{2^2}{5} = 0.8$	2
Question 5	1 for correct diagram
i. BC = AD and $\angle A = \angle C$ property of parallelogram ii. QC = AP since CD = AB and DQ = PB given $\triangle DAP \equiv \triangle BCQ$ SAS rule	1 1 1
\therefore DP = BQ (corresponding sides in congruent triangles)	1
(b) $x^2 - 8x + y^2 = -7$ $x^2 - 8x + 16 + y^2 = -7 + 16$ $(x - 4)^2 + y^2 = 9$ centre (4, 0) radius 3	1
(x + y + y) = y control $(+, 0)$ radiuss	1

b) $y = \sin 3x - 1$ $y' = 3\cos 3x$ $f'\left(\frac{\pi}{12}\right) = 3\cos \frac{\pi}{4} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \approx 2.12$ required m $f\left(\frac{\pi}{12}\right) = \sin \frac{\pi}{4} - 1 = \frac{\sqrt{2}}{2} - 1 \approx29$ y coordinate of point $y + 1 - \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2} \left(x - \frac{\pi}{12}\right)$ $y = y = m(x - x)$ $2y + 2 - \sqrt{2} = 3\sqrt{2}x - \frac{\sqrt{2}\pi}{2}$ OK to use 0.26 as y	1
$y = \frac{3\sqrt{2}}{2}x - \frac{\sqrt{2}\pi}{8} - 1 + \frac{\sqrt{2}}{2}$ In approximate form $y = 2.12x85$ would be adequate $\frac{729 - 64m^{6} = (9 - 4m^{2})(81 + 36m^{2} + 16m^{4})}{= (3 + 2m)(3 - 2m)(81 + 36m^{2} + 16m^{4})}$ Alternatively $\frac{729 - 64m^{6} = (27 - 8m^{3})(27 + 8m^{3})}{= (3 - 2m)(9 + 6m + 4m^{2})(3 + 2m)(9 - 6m + 4m^{2})}$ Is a more elegant solution	1 Approximate form is OK since exact form was not stated 1 1 OK not to have factorised 81+36m ² +16m ⁴ /12
Question7 a) $4-x^2 = 2-x$ $0 = x^2 - x - 2 = (x-2)(x+1)$ so $x = 2$ or -1	1
$A = \int_{-1}^{2} \left 2 + x - x^{2} dx \right = \left[2x + \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-1}^{2} = 4 + 2 - \frac{8}{3} - \left(-2 + \frac{1}{2} + \frac{1}{3} \right) = 4\frac{1}{2}$	2
b) $(x^2 - 1)^2 - 11(x^2 - 1) + 24 = 0$ $u^2 - 11u + 24 = (u - 3)(u - 8) = 0$ $x^2 - 1 = 3$ $x^2 = 4$ $x = \pm 2$ or $x^2 - 1 = 8$ $x^2 = 9$ $x = \pm 3$	1 2 allow 1 for 2, $3 = x$
c) $\int_{1}^{3} \log_{e} x^{2} dx \approx \frac{h}{3} (d_{F} + 4d_{M} + d_{L}) = \frac{1}{3} ((\ln(1) + 4\ln(4) + \ln(9)) = 2.58)$	3
d) $y = 2 + \frac{1}{x} becomes \ x = \frac{1}{y-2}$ $\int_{4}^{6} \frac{dy}{y-2} dx = [\log_{e}(y-2)]_{4}^{6} = \log_{e} 4 - \log_{e} 2 = \log_{e} 2$	3

Т

Question 8	
a) i) B, C, D	1
ii) $f''(x) > 0$	1
iii) at the points A, C and E	1

b) $(x-2)^2 = 4y-12$ ie $(x-2)^2 = 4(y-3)$	1
vertex is $(2, 3)$ focal length = 1 focus = $(2, 4)$	2
c) i) $a = 72000, d = 4000$ $T_5 = 72000 + 4 \times 4000 = \88000	1
ii) $S_8 = \frac{8}{2} (2 \times 72000 + 7 \times 4000) = $688\ 000$	1
$S_n = 1248 = \frac{n}{2}(72 \times 2 + (n-1)4)$	1
iii) $1248 \times 2 = 144n + 4n^2 - 4n$ $n^2 + 35n - 624 = 0$	
(n-13)(n+48) = 0	
The amount is earned over the course of 13 years	1 only award 1 if both answers
$y = e^{\tan x}$ $y' = \sec^2 x e^{\tan x}$	for n are given 1
	1 /12

Question 9

a) i) $x = t^3 - 9t - 12 \frac{dx}{dt} = 3t^2 - 9 v(0) = 9$ ii) $3t^2 - 9 = 0$ gives $t = \pm\sqrt{3}$ iii) $d = \int_{0}^{\sqrt{3}} 3t^2 - 9dt + \int_{\sqrt{3}}^{4} 3t^2 - 9dt$ $d = \left \left[t^3 - 9t \right]_{0}^{\sqrt{3}} \right + \left \left[t^3 - 9t \right]_{\sqrt{3}}^{4} \right = \left 3\sqrt{3} - 9\sqrt{3} \right + \left 64 - 36 - (3\sqrt{3} - 9\sqrt{3}) \right $	1 1 1
$=28+12\sqrt{3}m$ Alternatively $x(0) = -12 x(\sqrt{3}) = -6\sqrt{3}-12 x(4) = 64-36-12 = 16$ and $d = 28+12\sqrt{3}$	1
b) $V = \pi \int_{1}^{3} y^{2} dx = \pi \int_{1}^{3} (16 - x^{2}) dx = \pi \left[16x - \frac{x^{3}}{3} \right]_{1}^{3} = \pi \left(48 - 9 - \left(16 - \frac{1}{3} \right) \right)$ $= \frac{70\pi}{3} u^{3}$	3 Exact form not required

Solutions	Marks/Comments
Question 10	
(a) i. $SA = \pi r^2 + 2\pi rh = 300$	
$2\pi rh = 300 - \pi r^2$	2 marks – 1 for "h" 1 for "V"
$h = \frac{300 - \pi r}{2\pi r}$	1 101 V
$V = \pi r^2 h$	
$= \sqrt{\pi r^2} \left(\frac{300 - \pi r^2}{2\pi s} \right)$	
$=150r-\frac{\pi r^{3}}{2}$	
ii. $V = 150r - \frac{1}{2}\pi r^3$	1 marks 1 for differentials
$\dot{V} = 150 - \frac{3}{2} \pi r^2$	1 for value of 'r'
$\ddot{V} = -3\pi r$ which is less than 0 for positive r	1 for test 1 for max volume
Stat Pts when $\dot{V} = 0$	
i.e. $150 - \frac{3}{2}\pi r^2 = 0$	
$150 = \frac{3}{2} \pi r^2$	
$100 = \pi r^2$	
$r^2 = \frac{100}{\pi}$	
$r^2 = \pm \sqrt{\frac{100}{\pi}}$	
Now max Volume when $r > 0$ i.e. $r = \sqrt{\frac{100}{\pi}} = 5.641895835$ or $\frac{10}{\sqrt{\pi}}$	

